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Abstract

A new theoretical basis is derived for tracing optical rays within a finite-element (FE)
volume. The ray-trajectory equations are cast into the local element coordinate frame
and the full finite-element interpolation is used to determine instantaneous index
gradient for the ray-path integral equation. The FE methodology (FEM) is also used
to interpolate local surface deformations and the surface normal vector for computing
the refraction angle when launching rays into the volume, and again when rays exit
the medium.

The method is implemented in the Matlab™ environment and compared to closed-
form gradient index models. A software architecture is also developed for
implementing the algorithms in the Zemax™ commercial ray-trace application. A
controlled thermal environment was constructed in the laboratory, and measured data
was collected to validate the structural, thermal, and optical modeling methods.
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1. INTRODUCTION

Due to the rising complexity of space-borne optical systems, on-orbit performance requirements
must increasingly be verified by analysis with validation against a subset of data collected during
ground-based testing. These systems may experience dynamic thermal loads by virtue of their
orbital geometries, where time-varying sun illumination angles and earth-eclipse subject them to
extreme heat and cold. Since thermal loads degrade performance of an optical system by
misaligning, distorting, and altering the optical properties of components, detailed thermo-optical
analyses are required to complete the requirements verification process.

Current methods for performing thermo-optic analyses are extremely laborious and
predominantly compartmentalized according to discipline: structural, thermal & fluid mechanics,
and optical propagation analysis. While the structural and thermal engineering disciplines have
increasingly gravitated toward finite-element (FE) theory to provide tractable numerical methods
for modeling complex phenomena of coupled physics, optical engineering mostly relies upon
ray-tracing (geometrical optics) and Fourier analysis (wave optics) to model system
performance. The classical method of reducing FE data for final optical analysis involves
mapping into a form compatible with the chosen tools, e.g. least-squares fit of a Zernike
polynomial equation to the FE data. This mapping is not a true multi-physics implementation
and yields only an approximate solution at best. It is susceptible to error and cannot account for
effects of field-angle and compounded errors of upstream components in a single instantiation of
the mapped approximation.

This LDRD project constructs and demonstrates a new theoretical basis for tracing optical rays
directly within a finite-element (FE) volume. The classical ray-trajectory equations are cast into
the local element coordinate frame and the full finite-element interpolation is used to determine
the instantaneous refractive index gradient for the transformed ray-path integral equation. The
FE methodology (FEM) is also used to interpolate local surface deformations and the surface
normal vector for computing the refraction angle when launching rays into the volume, and again
when rays exit the medium. Resulting ray trajectories are compared against closed-form gradient
index methods using the Matlab™ modeling tool.

A software architecture is also developed for implementing the algorithms in the Zemax™
commercial ray-trace application. The architecture is constructed using the Zemax User-Defined
Surface API, for direct implementation of FE ray-tracing within the Zemax environment.
Software hooks are provided into the Zemax menu and dialog structure for custom FE analyses
and development comparisons.

Finally, a controlled thermo-optic environment is assembled in the laboratory for hardware
validation of the thermo-optic modeling capabilities. Surface and optical transmission data is
collected for fused-silica and BK7 window substrates under various thermal loads. Thermal data
is also measured and compared to model predictions under specified heat loads.
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2. THE THERMO-OPTIC ANALYSIS PROCESS

2.1 Optical System Overview

A thorough discussion of optical system design methodologies is beyond the scope of this paper.
However, a short treatise on the subject bears merit in the context of defining the overlapping
roles of optical design and analysis, mechanical design, and structural analysis. Also, for
systems expected to operate in extreme thermal environments, heat-transfer and thermal analyses
must be included to ensure a system meets its performance requirements.

At the most basic level, an optical system is comprised of one or more optical components
(lenses, windows, or mirrors) held in relative alignment by a housing or mechanical metering
structure. A system may include an integrated optical sensor, or allow the collected optical
energy to exit through an aperture. Each of these subcomponents is comprised of physical
materials (glass, metal, plastic, etc.) that inherently possess certain properties (index of
refraction, absorption coefficient, coefficient of thermal expansion, elasticity, thermal
conductivity, etc.). Moreover, when subject to varying environmental parameters (temperature,
pressure, force loads, etc.), the components of a system react to these changes in a manner
consistent with their material properties. The components are coupled by virtue of the system
design, and component changes due to environmental factors impact the overall optical
performance.

Optical systems designed for the space environment are subject to extreme changes in
environmental parameters. These systems are integrated and tested in laboratories under
gravitational load at 1 atm pressure, and subsequently launched into orbital geometries with zero-
gravity and vacuum pressure. On station, the systems may (depending on orbitology) experience
both full sun illumination (without benefit of atmospheric filtering) and full earth shadow,
creating time-varying and extreme thermal conditions. Since many of these parameters cannot
be duplicated in the laboratory environment, verification of performance requirements must be
achieved through modeling and analysis.

2.2 Classical Thermo-Optic Analysis

The classical approach to thermo-optical analysis involves sequential development of expert
domain models for thermal and structural analyses, with results cycled back to the optical
designer for reintroduction into the original prescription file and final performance assessment.
This approach is necessitated by the complexities of the required analyses and the maturity of the
codes developed by and for each expert domain.

The fields of structural and thermal analysis have increasingly gravitated toward finite-element
models to provide tractable numerical methods for modeling complex phenomena of coupled
physics. A number of commercial tools are available to generate the discretized models and
perform the specialized analyses. However, optical analysis predominantly relies on ray-tracing
or Fourier wave propagation techniques. Inclusion of FE results in an optical analysis is not
easily accomplished with these tools. Methods for mapping the results to a standard polynomial
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equation are given in [1]. For transmissive optical elements, the compound effects of thermal
distortion and the thermal dependencies of refractive index, render this mapping valid only at the
specific wavelengths and field-angles for which they are derived. Broad-spectrum and broad-
field analyses require the mapping to be performed many times at discrete values. This is a
laborious, inflexible, and costly process, which typically relegates thermo-optic analysis to the
post-design and integration phases of system development. At this late stage of design, any
flaws exposed by the thermal analysis will be extremely costly to repair.

2.3 Finite-Element Ray Trace Analysis

By developing a capability to perform ray-tracing directly within a FE volume, these limitations
are largely mitigated. FE data can be readily imported into the ray-trace application and optical
parameters such as field-angle and wavelength can be varied at will, enabling rapid analyses over
broad parameter sweeps and reducing costs. This capability allows thermo-optic analyses to be
performed earlier in the system design cycle, enabling a higher level of optimization of the
design.

While basic methodologies for finite-element ray-tracing have been explored for a number of
years [2] [3] [4], the outlined techniques do not fully integrate the finite-element methods.
Richerzhagen [2] over-simplified the approach by assuming a uniform FE discretization and
homogeneous index within each sub-element. Epstein, ef a/, [3] limited the ray-trajectories and
gradient geometries to specific cases with special application in the field of seismic wave
propagation. And, Gatej, ef al, ignored the FE connectivity and interpolation methods in favor of
a nodal scattered data approximation technique for determining refractive index along the ray
trajectory, relegating the ray-trace portion to an intermediate step with Zernike mapping for the
final optical analysis (similar to the classical thermo-optic analysis process).

The primary contribution of this LDRD effort is the development of a finite-element ray-trace
theory that fully exploits the rich methodologies of FE theory for interpolation and gradient
calculations within an element volume defined by a collection of discrete nodes. The theory
outlined in [5], enables ray-tracing directly within a finite-element volume and has broad
application in the fields of optics and seismic wave propagation. The approach allows data files
from the thermal and structural FE models to be imported into the optical ray-trace application
and multi-spectral, multi-field analyses to be performed with no need for intermediate
processing. The ease and reduced cost allow thermo-optic analyses to be performed earlier in the
design cycle for optical systems, reducing risk and enabling a higher degree of design
optimization.
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3. RAY TRACING IN THE FINITE ELEMENT DOMAIN

3.1 Ray-Trace Equations in the Finite Element Domain

The differential ray equation is given in [6], as

d dry .
o] o) 0
where r is the position vector of a point on the ray, n(r) is the refractive index of the medium at
position r, and ds is a differential portion of the arc length s along the ray. Using the change of
d 1

R e | | TR
variable N and nproposed in [7] and the techniques described in [5] (included in
Appendix A), this equation can be expanded in Cartesian space and cast into a pseudo-
Newtonian mechanics form to yield,

2

dx on’

" 2l —

dt ox

Pyl 1, 1on?

—|=-on?=-21|.

a?| 2 2| oy

d’z on’

Lt 0z (2)

In this equation, the gradient of the index-squared acts as a "forcing function" which imparts a
"pseudo-acceleration" of the ray as it travels through the medium. Integration of equation (2)
over the independent variable t, yields the trajectory of the ray in (x, y, z) physical Cartesian
coordinate space.

In [5], the transformation of equation (2) from (x, y, z) physical coordinates to the (&, 7, &) local
coordinate frame of the finite-element is derived. For the FE local frame, the ray equation
becomes,

ki o
dt og dt
| orflpafen’] drdn
dtz 2 on dt | dt
d% on’| %
e o

, 3)
where J is the Jacobian matrix of the element at position (&, 7, ), 1" denotes its transpose, 7 lis

the matrix inverse, and J- 'is the inverse of the transpose matrix. It is interesting to note the right
hand side of equation (3) carries two forcing function terms, while that of equation (2) carries
only a single term. One of the terms in equation (3) is the analogue to the gradient of the index-
squared, composed in the local FE (&, 77, {') domain. As explained in [5], the second term
resolves the curvilinear mapping of the local FE domain to the physical coordinate space.
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3.2 Ray-Trace Algorithm

A sequential algorithm for tracing a given ray through a finite-element volume is also described
in [5]. The basic algorithm entails the following steps:

1. Find the intersection of the given ray with the surface.

2. Determine the finite-element that encompasses that intercept point.

3. Map the intercept point into the local (&, 7, ') frame of the intercept element.

4. Refract the ray into the element at the intercept point.

5. Cast the refracted ray into the curvilinear space of the local element frame.

6. Trace the ray through the element until it exits some surface (defined by a crossing of the
* 1.0 point in any local axis).

7. Determine if the ray transitions to a neighboring element and perform the element

transition transformation, if required.

Repeat steps 6 and 7, until the ray exits the FE volume.

9. Refract the ray into adjacent medium upon exit from the volume.

*®

While this algorithm appears rudimentary and simplistic, the complexity and importance of steps
one through three cannot be over emphasized. Accurate determination of the ray incidence point
and its mapping into the local (&, 7, ') coordinates of the incident element is a non-trivial task
that strongly impacts the accuracy of the ray trace. A gradient-descent cost-minimization
approach to determining the incidence point in (&, 7, ') space is proposed in Appendix B of [5].
However, during implementation of this approach a fundamental degenerate geometrical error
was discovered in that formulation.

3.3 FE optical surface interpolation error

A typical optical surface is generally characterized by a closed-form conic-equation of
revolution, with sag z given by

2
Cr
L4y 1- (1 + ke, (4)

where c is the curvature, defined as the reciprocal of the radius of curvature at the center (vertex)
of the optical surface, & is the conic-constant, and r is the radial distance from the vertex. This
closed-form equation is continuous, providing one-to-one mapping of the sag at any given point
(x, y) lying on the surface. The intersection of any given ray with the surface defined by
equation (4) is readily determined through simple geometry. Most ray-tracing applications
employ some form of this equation in their respective ray-trace engines.

7=

When discretizing the surface of equation (4) for finite-element analysis, a number of nodes are
defined on the surface which must also satisfy the conditions of the conic equation. A
connectivity mapping is then implemented to define elements with surfaces that lie on the conic
surface. In the fundamental approach of [5], FE methods provide a means to interpolate certain
parameters between the nodes of the defined element using equations of the form:
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1
pENL) = ZNipi
=1 (5)

where p is the parameter of interest, p; is the value of the parameter at the i node, ; is the i
shape function, and / corresponds to the number of nodes contained in the element (e.g. / =20
for a HEX20 element). The shape functions are dependent on the number of nodes contained in
the element and the local coordinate position (&, 77, {'). For a HEX20 element, the shape
functions are given in Table 1, and provide 2"-order parameter interpolation throughout the
volume between the nodes.

Table 1. Shape functions for a HEX20 element.
Shape Function

1
N, = -g(l-E)(l-n)(l-C)(2+§+n+C)

1
Ny = - (14 9(1-m(1-02-&+n+0)

1
N; = -§(1+§)(1+n)(1 -02-&-n+0)

1
N, = -g(l-i)(1+n)(1-<§)(2+§-11+€)

1
Ns= -20-9(1-n1+H2+E+n-0

1
Ng = -§(1+§)(1-n)(1+C)(2-i+n-C)

1
N, = -§(1+g)(1+n)(1+C)(2-&-n-C)

1
Ng = -g(l-é)(1+n)(1+C)(2+§-n-C)

1
Ny ZZ(I -+ -n)(1-0)

1
Ny, :z_l(l +O -m(d +n)(1 -C)

1
Ny =+ O -1 +n)(l -8

1
N, :4_1(1 -9 -m)(1+m)(1 -0

1
N3 :4_1(1 -9+ -1 +E)

1
Ny, :Z(l +OI -m)(d +n)1 +0)

1
Nis :4_1(1 -9+ +n)(1 +E)

1
Njg= 4_1(1 -9 -m)(I+m(1 +0)

1
Ny, :4_1(1 -9 -m)(1 -9 +C)
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1
Nig :Z(l +OI-m)1 -0 +0)

1
Ny =71+ 8+ -5 +)

1
Ny =50~ O +n)(1 -5+

In the FE construct, the local coordinates are bounded in the range [-1;1]. Therefore, at the
optical surface, one of the coordinate parameters must be £1. Setting £ = 1 in the shape function
equations of Table 1, yields:

Table 2. HEX20 shape functions on the
{ = +1 surface.
Shape Function
N,=0
N,=0
N,=0
N,=0

1
N = -Z(l-é)(l-n)(1+§+n)

1
Ng = -Z(1+<§)(1-n)(1-§+ﬂ)

1
N;= -Z(1+§)(1+n)(1 -§-m)

1

Ng=-,d -9 +md +E-n)

Ny, =0

Ni,,=0

N, =0

N,=0
1

Niz =21 -90+9(1 -n)
1

Ny =20+ -md +m)
1

Nys ZE(I -9+ +n)
1

Nig =50 - O -m)(1 +mn)

N,;=0

Nizx=0

Niy=0

N,,=0

20

The eight non-zero functions are identical to the shape functions of a QUADS plate element,
which is consistent with interpolation on any surface of a HEX20 solid element. In expanded
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application, the QUADS shape functions provide second-order interpolation of the nodal
parameters in the form:

_ 2 2 2 2
p=a; T a)X+azy+axy+ax +agy” +axy+agxy” (6)

Using this equation to interpolate the sag z, it can be shown that except for special cases of the
conic-constant &, equation (6) and equation (4) cannot generally be made to yield identical
results for any given values a; — ag. Therefore, the FE interpolation shape functions are
generally inadequate for describing a conic-equation of revolution on the optical surface.

As an example, consider a spherical optical surface (¢ # 0, k£ = 0) with a QUADS (or, HEX20)
finite element located at the vertex and the surface nodes residing at equal radial distances from
the vertex, such that the z-coordinate values are identical for all eight nodes on the surface. For
this case, all eight nodes lie in a plane, parallel to the XY plane. Any interpolation scheme based
only on the eight nodal coordinate values will yield a point which also lies in the plane. The
error from the true surface can be dramatic when considering optical elements with a steep radius
of curvature. By extension, the FE interpolation methods are generally inadequate for finding
the intersection of a given ray with the true optical surface. Indeed, this is a shortfall of the FE
interpolation method as applied to the ray-trace formulation.

To overcome this shortfall, it is required to allow the local FE coordinates to lie outside the [-1;1]
bound when interpolating points on the surface of the optic. Then, the error metric proposed in
[5] must be redefined for determining the ray-intersection point on the surface.

3.4 Ray intercept calculation

To maintain consistency between the FE interpolation and the surface of revolution equations, a
new method for calculating the ray intercept is required. The approach derived for this LDRD is
an extension of the classic ray-direction method. In a homogeneous (ambient) medium, rays
maintain a linear trajectory. Therefore, given a specific ray defined by its direction cosines (a, 3,
v) and a single physical point (xy, 1, zo) through which it passes, any other point (xy, y1, z1) lying
on the ray trajectory may be determined by

Xo

Yo
Zy

X1
Y1
Z

(o8

B
Y

+t

(7)

where ¢ is the distance between the two points. Note that [, B, 7] is a unit vector.

If (x1, ¥1, z1) also lies on an optical surface, the values must simultaneously satisfy the surface
equation, e.g. equation (4). Explicitly, this yields,

C(Xl2 + y12)

b 1 +\/1 -(1 -S-k)cz(xl2 +y12) ®)

V4
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In the classic formulation, equations (7) and (8) are combined and rearranged to provide a
closed-form solution for #, which can be substituted back into equation (7) to yield the intercept
point.

3.4.1 Intercept of the nominal surface

To find the FE local coordinates of the intercept point, it is necessary to define a consistent set of

equations between the FE shape-function interpolation and the surface equation. For the nominal

(load-free) finite-element lying on the surface of the optic, it is easy to see from equation (5) that,
1 1 I

X = ZNiXi y = ZNiyi 7= ZNiZi
i=1 i=1  ;and i=1 . But if the point defines the intersection of a ray with an
optical surface, it must also satisfy equations (7) and (8).

Applying the constraint of equation (8), yields

SR LR

Z=Y Nz =
T 1+ J 1-(1 +k)c2[(ZNixi)2 - (ZNiyi)z]

And, combining these constraints leads to the vector error metrics,
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and. 1+ Jl -(1+ k)cz[(ZNixi)z - (ZNiyiﬂ’ ©)

which can be assembled into a total error vector,

€
e =
[ez].
The error cost metric is defined as the inner product (dot product, or H, norm) of the error. A
gradient descent algorithm may be employed to minimize this cost, as described in [5].

Equations (9) capture the constraint space of the full 3D local coordinate frame of a solid
element. When used to generate the cost value for gradient minimization, the search parameters
are (&7, ¢, 7). The result yields the proper local coordinates (& 7, {) of the ray intercept point on
the surface of the incident element, allowing for absolute local coordinate values in excess of 1.0
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to enforce the equivalence of the surface equation and the FE interpolation shape-functions. It
also yields the ray path length #, allowing the physical coordinates to be derived from equation

(7).

However before this minimization can be applied, the true incident element must first be located.
Reference [5] outlines an iterative approach for finding the incident element, using only the
“glued-on” QUADS plate element of the optical surface. In this approach, the local coordinates
of a candidate plate-element are determined using only the first three components of equation
(9). Since plate elements carry only a 2D local coordinate frame, the result must be bounded by
the £1.0 constraint of the element. If the result lies outside this bound, the neighboring elements
are queried in an iterative fashion until the properly bounded plate element is located, or the ray
is determined to have missed the optical surface. When the proper element is discovered, the full
equation (9) is applied to the underlying solid element to derive the 3D local coordinates of the
intercept point.

3.4.2 Intercept of the distorted/displaced surface

Under exogenous load, the nodes comprising the optical surface are displaced. These
displacements are captured as separate nodal parameters, which are interpolated in the common
approach of equation (5). For displaced nodes, the coupling equations between the FE shape-
functions and the surface equation must be modified. Moreover, the modification must be
consistent when applied to both rigid-body motions of the optic and compliant deformations of
the surfaces.

The coupling system proposed in this LDRD assumes linear summation of displacement with
nominal position of the surface. When the surface equation is the standard conic of revolution,
this is represented by,

. ZNiyi ZNiein
i

Y Nixi 24 Niyi 2 + ZNisyi
(20 (5] |

Z

1+ J 1-(1+ k)cz[(ZNixi)z + (ZNiyi)z]l

This form can replace the terms for e, of equation (9), when finding the ray intercept of optical

components under load. Considering rigid-body displacements, the ox;, dy;, and oz; are defined
as constant for all i. Inclusion of the sag function for z, based on the nominal interpolation for x
and y (without displacements), ensures consistency in the coupling.
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4. IMPLEMENTATION IN THE ZEMAX USER-DEFINED SURFACE

4.1 The User-Defined Surface (UDS) API

The Zemax ray-trace application provides a C-code application programming interface (API) for
developing custom surface types [8]. The API uses two function argument structures to pass
data to-and-from the user’s code in a Client-Server architecture. It is similar to a callback
function, applying a master switch-case structure to service requests made by Zemax when
executing specific ray-tracing tasks. The reader is directed to the Zemax manual for further
description of the APIL.

It is important to note that the Zemax UDS can only be used in sequential ray-trace mode. In this
mode, Zemax requires rays to be traced sequentially from surface-to-surface until they strike the
final surface of the system, or they miss the next surface in the optical train. A ray cannot strike
the same surface twice. If a ray misses a surface, Zemax stops tracing that ray. Also in this
mode, the surfaces define the interfaces between optical media (e.g. air-to-glass, or glass-to-air
transitions). Zemax assumes the optical media between surfaces to be homogeneous, and
performs the calculation to trace a ray from one surface to the next.! When a ray is incident upon
a UDS, Zemax passes ray information to the UDS code and requests information about the
refraction of the ray at the surface, including the point-of-incidence, the surface slope at that
point, and the direction of the refracted ray. Zemax then traces the ray through the medium to
the next sequential surface.

Conversely the FE ray-trace is implemented through adjacent FE volumes, not surfaces.
Therefore, when implementing the FE ray-trace within a UDS, it is necessary to provide code-
traps for special cases, to enforce proper sequential operations within the API. Further, the FE
volume is defined throughout the region between two sequential surfaces. Significant attention
must be applied to managing the volumetric aspects within the sequential-surface API provided
by Zemax.

The Thermo-Optic Propagation (TOP) code developed under this LDRD uses an optical singlet
data structure to implement the FE ray-trace construct. An optical singlet has a front and back
surface, defined by a radially-symmetric equation of revolution, and is comprised of an optical
medium - in this case an FE volume. The FE volume is comprised of an optical material that has
been discretized into nodes with a nodal connectivity map that defines the finite-elements. The
majority of the FE data is supplied by FE analysis and is read into custom objects and structures
within the UDS as a text file. The TOP code architecture makes extensive use of the Microsoft
Foundation Class (MFC) libraries to manage the optical singlet data using the MFC
Document/View architecture.

! Special surface-types exist in the Zemax library to introduce gradient-index (inhomogeneous) media into a lens
file. Only a handful of such surfaces exist, and each implements a special closed-form equation describing the
gradient to use during the ray-trace between surfaces.
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Much effort was expended in the TOPCode development to create a common-look, common-feel
to the Zemax intrinsic surface library. The TOPCode UDS is inserted as a surface into a lens
prescription file in the same way as any other surface type. The first instance of the UDS
requests the user to identify the FE data file for import.> The UDS will then inform the
user/designer that a second TOPCode UDS surface is required to sequentially follow the first.
The sequential pair of TOPCode surfaces define the front and back surfaces of the FE singlet.
The TOPCode UDS manages this pair of surfaces for ray-trace and analysis.

Multiple FE singlets may be inserted into any lens prescription file, using pairs of TOPCode
surfaces to define each optical component. The TOPCode UDS manages the FE data associated
with each singlet, to provide high fidelity ray-tracing and analysis.

4.2 Zemax ray-trace requests

When performing sequential ray-tracing through a lens system, Zemax uses the optical-surface
information listed in the Lens Data Editor (Surface Type, Radius of curvature, Glass type, etc.) to
calculate the refraction at the surface. It then propagates the ray over the Thickness of the
surface, and repeats the process at each sequential interface. When a UDS is encountered in the
sequence, Zemax passes the incident ray parameters to the user’s custom code, and issues a flag
requesting the ray refraction information. The UDS code must return this information in the
argument structure defined by the API. Zemax then uses this information to propagate the ray
over the thickness, using the optical properties of the listed glass-type

The TOPCode UDS must operate within this API construct. When Zemax requests refraction
information for a ray incident on the front surface of the FE singlet, the UDS must:

1. Determine the incidence point of the ray with the (possibly deformed/displaced) front
surface.
Find the finite-element containing the incidence point.
Interpolate the index of refraction and surface normal at the incidence point.
Refract the ray.

5. Return the refraction information to Zemax in the required structure.
Zemax will then trace the ray through the listed thickness of the surface, until it strikes the back
surface of the FE singlet. Since the back surface is also a UDS, Zemax will issue the same ray-
trace call to the UDS using the propagated ray definition parameters for this surface of the FE
singlet.

Rl el

The TOPCode UDS must recognize the Zemax request is for the back surface of the singlet.
Since Zemax assumed a homogeneous medium for calculating the incoming Zemax ray
information, the UDS must:

1. Find the intersection of the ray with the front surface.

2. Find the finite-element containing the incidence point.

3. Cast the ray trajectories into the local coordinate frame of the incidence element.

4. Re-trace the ray to the back surface using FE ray-trace methods in the (possibly

inhomogeneous) FE volume.

2 The FE data file must have a specific format, with a number of sections defining critical data for the ray-tracing.
See Appendix E for definition of the required FE file format.
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Re-cast the ray into physical coordinates at the back surface.

Interpolate the index of refraction and surface normal at the incidence point.
Refract the ray at the back surface.

Return the refraction information to Zemax in the required structure.

PN

Whether Zemax is requesting ray information for the front or back surfaces of the FE singlet,
proper determination the ray incidence point with the front surface is critical. Hence, the
modifications to the ray intercept calculation outlined in section 3.4 are also critical.

4.3 Using the FE surface in a Zemax lens file

4.3.1 Modeling an FE singlet in a lens file

The FE surface is a custom user-defined surface. To use the surface type in a Zemax lens file,
the user must select the User Defined surface type from the Type tab of the Surface Properties
dialog in the Zemax Lens Data Editor. When this surface type is chosen, the Surface DLL edit
box becomes enabled, allowing the user to select the us_therm.dll from the drop-down list, as
show in Figure 1, below.

Type |Draw I .&perturel Scatteringl TiIt.f'Deu:enterI F'h_l.Jsiu:aIDptic:sI Eu:uatingl

Surface Type: ILlser Defined j
Surface DLL:

Surface Color: IDefauIt Calor j

Surface Opaciby: |1DDZ j
Row Color: IDefault Calor j

[ Make Surface Stop

[ Make Surface Global Coordinate Feference
[™ Surface Cannot Be Hyperhemispheric

[ lgnore This Surface

Previous Surface I Mest Surface |

0k I Cancel | Help |

Figure 1. The Zemax Surface Properties dialog.

When the user selects OK, a new popup dialog is generated, requesting the name of the FE data

file to use for the FE volume being defined, as shown in Figure 2. This dialog allows the user to
navigate to the correct FE data file. The data file must have a structure similar to that described

in Appendix E.

After selecting the proper file, the warning message of Figure 3 is displayed, indicating that a

second, sequential UDS is required in the lens file to complete the FE singlet definition. The
user must insert a new surface in the Lens Editor, and repeat the surface-type selection to
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complete the FE volume definition. Since the UDS manages the pair of FE surfaces using

data

contained in a single FE data file, the user is not prompted for the FE data file a second time.

The final lens file listing for the FE singlet is shown in Figure 5.

‘G( )v| _ ~ My Documents ~ Prajects ~ LDRD_ThermoOpticModeling - FEMData ~ 23 [ search FEMDAta
Organize *  Mew Folder 4= w
J LDRD_ThermoopticModeling ﬂ Mame ~ | Date modified |
. FEMData | h
121015 tput.k 10/18/2012 4:112 PM

, FinalReport — e 18
| 1058 _paper || 121018sample_output_UMI.Ehrm 103002012 12:49 PM
| LabExperiments | 7] 130412 _localized _distortion_data.themn 4/12/2013 11:25 AM
J LatestCode 7] 130522sample_output_coarse_mmesh.thrm QZ0/2013 3:24 PM
. LegacyEfforts J | 7] 1305225ample_output_refined_mesh.thrm 5/22/2013 1:13 PM
¢+ Management | 7] 130923 _localized_deformation_g_node_excl.thrm 9/23/2013 11:13 AM
| Matlab

b | 7] 130923 _localized _deformation_8_node_incl, thrm 91232013 11:08 AM
| Papers
| Posters | 7| 14040865 _Mount_optics.thrm 41912014 9:12 AM
| ThermalModels 40606 _Bk w_heat: coarse_mesh.thrm 014 9:16 AM
) ZemaxMdls

M id K1 | 2
140606_BK7_window_heater_3WWatt_coar... Date modified: 6/6/2014 9:16 aM
- l THRM File Size: 4.37 MB

File narne: I14060ﬁ_BK?_window_heateeratt_coarse_mesh.thrm j IThermaI Data Files (*thrm) j

Open |vI Cancel |

4
Figure 2. Open-File dialog for the FE Data File.
us_therm x|
& "Thermal 52" surface must sequentially Follow a "Thermal 51"
! % surface,
Figure 3. Dialog showing requirement for a second UDS surface.
=k
Edit Solves Wiew Help
Surf:Type Comment Radius Thickness ;I
OEJ Standard Infinitcy Infinitcy
STO Standard Infinity 0.000000000000
2 Infinity 0.000000000000
THA Standard Infinity _

Figure 4. Lens file listing for the first surface of the FE singlet.
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I=TE

Edit Solves Wew Help

Comment Fadius Thickness LI
OBJ Standard Infinity Infinity
aTo Standard Infinity 0.0o00o00000000
2 Thermal 31 10.000000000000 _I
3 Thermal 32 -Z0.00000a0a00a0 0.0000a0000a00
IML Standard Infinicy -
Kl _ v 4

Figure 5. Complete lens file listing for the FE singlet, showing front and back surface.

Additional FE singlets may be added to the lens file in a similar fashion, with each pair of
surfaces requiring a separate FE data file.

4.3.2 Typical use-case scenario

Note in Figure 5 that the user must also specify the radius of curvature and nominal thickness of
the FE singlet. In the typical use-case scenario for this tool, the design flow-cycle for an optical
system begins with design and optimization of the lens prescription file, using intrinsic surface
types (conic surfaces of revolution) from the Zemax catalog. This optimization creates a
“floating” optical design, with no supporting structure or housing.

A solid model is then exported for use by the opto-mechanical team in designing the necessary
supporting structure. The support structure is designed to hold the optics in alignment within a
required tolerance, under specified environmental loads. Analysis of the structural performance
is accomplished using FE methods. The FE models generated during these analyses are used to
export an FE data file of the form listed in Appendix E, which is delivered back to the optical
designer. The optical designer then modifies the original design file, using UDS surfaces and
entering the FE data files as appropriate. Final lens performance is then analyzed for the system
under load.

In this scenario, the original lens optimization will determine thicknesses, radii of curvature, and
other coefficients for the conic equations of revolution. The designer may choose higher-order
aspheric surface types, requiring additional data. Since the exported solid model and returned FE
data files do not carry this information to the precision necessary for ray-trace operations, the
UDS requires this information to be maintained by the optical designer. For this implementation,
the UDS maintains a common-look, common-feel to the intrinsic Zemax surface types.

To change parameters of the UDS surface and how it is accessed by the ray-trace engine, the
Surface Properties dialog is augmented to include an additional FE Data tab for this surface
type, as shown in Figure 6. In this custom property sheet, the user may change the specified FE
data file, the Surface-Type emulator, or various other parameters of the FE model and
corresponding analysis behavior. The Surface-Type emulator allows the user to include
specifications of the optimized lens design that may be lost in the FE data file, including higher-
order aspheric surface types. The specified surface type and coefficients entered into the Lens
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Data Editor define the surface equation used by the ray-intercept method described in section

34,
I

.T_l,lpe I Diraws I .-“-‘-.perturel Scatteringl Tilta’DecenterI F'hysicall:lpticsl Coating FE Data |

FE Data Filefz): |14IIIEEIE_E!K?_windu:lw_heater_S'Watt_c:c'arse_mesh.thrm; j

Surface Twpe Emulation:

|nterpalation Shape Function: I j

Frant Surface:; |2 Back Surface: |3 Glazs: I-r‘u:une-

[ Use FEM Trace

¥ | Usze Maode Temperatures

¥ | Usze Mode Dizplacements

™| Feport Only Defarmation Sag

Breviouz Surface | Hext Surface |

()% I Cancel | Help |

Figure 6. The FE Data tab of the Surface Properties dialog.

This tab also provides other switches to modify certain portions of the FE ray-trace calculations
when performing optical analyses. The function of these switches is outlined in Table 3, below.

Table 3. User switches for FE ray-trace analyses.

Switch State Description

Use FEM Trace unchecked | The UDS reverts to conic equation emulation only, and
does not perform FEM ray tracing.

checked FE ray-trace is performed according to the other switches.

Use Node unchecked | Homogeneous refractive index of the bulk material is used
Temperature in the FE ray-trace calculation.

checked The UDS calculates the temperature-dependent index of
refraction at each node and uses FE methods to interpolate
the index gradient in the FE ray-trace calculation.

Use Node unchecked | The nominal surface equations are used in the FE ray-trace
Displacements calculation.
checked The UDS includes surface deformations due to thermal or
structural loads in the FE ray-trace calculation
Report Only unchecked | The total sag is reported upon each Zemax request.

Deformation Sag checked The UDS does not include bulk sag of the surface due to
radius of curvature when responding to Zemax sag
requests.
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Combinations of these switches allow the analyst to validate UDS calculations against those of
the intrinsic surface types, and to independently explore impact of various aspects of the thermal
and structural loads with the chosen material properties. For example, if the temperature effects
have a higher impact on optical performance than the surface deformations, the designer may
choose to find a material with lower dn/dt, or a higher thermal conductivity to more rapidly
disperse the thermal load. Or, a material with lower CTE may be required to reduce surface
distortions, if that is the limiting factor in the optical performance.

4.3.3 Custom Analyses

Since the UDS is a custom dynamic-link library (DLL) loaded into the Zemax address space at
run-time, the MFC library provides programming functions to gain access to the Zemax root
resources, including the main Zemax menu, and the Zemax message-loop in the Windows
operating system. This capability allows the Zemax menu to be augmented with custom
analyses when the UDS is loaded into a prescription file. This feature is demonstrated in Figure
7, where the Thermal Surface pop-up menu items have been appended to the bottom of the
Analysis selection menu. The code structure for this capability is open source within the UDS
software project. So, this capability can be extended for any future items that become evident as
the tool is matured.

# zeman 12 EE - 23171 - C\Users'kschrad',Documents',Zemas', SamplesiLDRD_BK7_Coarse.ZM%
File Editors System | Analysis Tools Reporks Macros  Extensions  Window  Help

Layout b i Lay | L3d | Lsh | Ra
Fans

Spok Diagrams

3‘ Lens Data Editol B

Edit Solves Wiew FEIF

Wavefrant

Surf:l Surface Comtrent Radius Thickness
QBJ RMS Infinity Ini
STO Encircled Energy Infinity 0.000000¢
Image Simulation —
2 Bmadky Aralas Infinity 12 .70000010
3 Miscellaneous Infinity 0.0o0000arc
IMA Aberration Coefficients Infinity

Calculations

Glass and Gradient Indesx
Universal Plok
Polatization

Coatings

Physical Optics

MSC Ray Tracing

Source Yigwers

fd ¥ * Y Y ¥F ¥F T ¥ Y ¥F ¥F Y *YF Y Y Y YT IYTCITCIETTY

Re nt
Component Analysis
Model Information

Horizontal angles: EFFL: 1e+010 WFMO: 10000

Figure 7. Custom analyses inserted into the Zemax main menu.

The Render Component analysis is a particularly useful custom capability developed within the
code. This item creates a custom rendering window to visualize aspects of the finite-element
singlet in its local coordinate frame. This analysis enables multiple aspects of model correlation
for the coupled system. Rendering of the local FE coordinate axes assists the analyst in mating
the coordinate systems within the Zemax master frame. Color shading may be attached to
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specific nodal parameters, such as temperature or nodal displacement. And, rendering of the
node locations and element connectivity allow correlation of localize optical effects with the FE
geometry and structure. Figure 8 shows the rendering for the validation test model, where it is
seen that the exported mesh geometry is highly asymmetric. This is a common artifact of auto-
mesh software used in the field of FEA. Indeed, mesh optimization is a subset expert subject
matter within this field. Since the UDS and FE ray-trace theory are built upon the underlying FE
methods, it easily accommodates any mesh exported by the FE modeler.

[@lRender window | Temperature | Surfaces 2 & 3

Update Settings Save Prit Window Text Zoom Spin

A:Oms S:1433ms L:276ms N:167ms T:3040ms

Figure 8. Rendering of the finite-element singlet in its local coordinate frame.

4.3.4 UDS Software Status

The foundation of the software architecture for the UDS is complete and fairly mature, providing
flexibility for adding new features and capabilities as required. However, the mathematical error
and mitigating construct described in sections 3.3 and 3.4, were only discovered in the fnal days
of the project. As such, the UDS is not yet ready for deployment to the broader community.
Completion of the UDS will require implementation of the intercept calculations outlined in
section 3.4, using other funding mechanisms.
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5. MODEL VALIDATION AND TESTING

5.1 Test Description

As part of the TOP LDRD, a series of thermal tests were conducted to obtain interferometer,
temperature and IR results for N-BK7 and Fused Silica (FS) windows. The windows were 0.5
inches thick and diameter of 3-inches. A summary of window properties is given in Table 3. FS
has a CTE an order of magnitude lower than N-BK7 and a higher thermal conductivity.

Table 4. Material properties for selected test articles.
Material Density Thermal Specific Coefficient
(g/cm3) Conductivity Heat of Thermal
(W/m-°K) (J/kg-°K) Expansion
(CTE)
(1/°K)
N-BK7 [9] 2.51 1.114 858 8.3x 10°
Fused 2.2 1.38 740 0.55x 10°
Silica [10]

The windows were held with a self-centering element holder on a 2-axis mount and supported on
an optics bench. The window was heated on the outer surface with a Kapton insulated heater.
Window temperatures were recorded with Type-T thermocouples adhesively attached to the
window’s back surface. Steady-state temperatures were recorded for heater powers of 1 W, 2 W,
and 3 W, respectively. Measured temperatures were compared to infrared (IR) camera
measurements and thermal analysis software tools (ANSYS, Sierra/Aria).

5.2 Interferometer Test Setup

A photograph of the four-surface interferometer test setup is shown in Figure 9. A 1550nm MST
interferometer measures the optical performance of the window’s front and back surfaces. A
Kapton insulated heater [11] (Minco HK5576R45.0L12A) was attached to the edge of the
window with an acrylic pressure sensitive adhesive (PSA), 3M966. The heater resistance
tolerance is £10% with 30 AWG wire and Teflon insulated leads. The maximum heater current
capacity is 3 amps and at 75°C has a maximum power density of 10 W/in?[11]. The heater
width and length dimensions are 0.5 by 1.5 inches, and a maximum thickness of 0.012 inches.
Heater power was provided with an external power supply. After interferometer measurements
were made, the two-axis mount was removed. Thus, the interferometer was recalibrated after the
mount was reinstalled. IR images were recorded with an A325sc FLIR camera located
approximately eleven inches from the optic window. The camera was also tilted slightly off-axis
to remove reflections from the warm camera body. During IR measurements, the camera and
part of the forward portion of the setup was covered with a black coated aluminum shield to
minimize background reflections.
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Figure 10. Infrared camera test setup, (a) Two-axis mount removed,
(b) black aluminum cover.

Omega Type-T thermocouples (SSC-TT-T-30-180) [12] were attached to the back surface of the
windows using Traduct 2902 adhesive. Figure 11 shows the locations of the thermocouples on
the NBK7 window and similar locations for FS in Figure 12. It was difficult to exactly locate the
thermocouples and the position uncertainly could be up to £0.125 inches. A thermocouple also
recorded the nearby air and heater temperatures. Temperatures were recorded using a Labview
data acquisition system. The Labview system was calibrated using an Omega CL123 calibrator
for input temperatures ranging from 20 to 100°C. A summary of calibrated results is given in
Table 4, where a gain slope error is evident in the measured values being higher at temperatures
below 40°C and lower at temperatures above 40°C. Tests were performed with heater powers of
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1,2, and 3 W, respectively. Based on heater resistance tolerance, the heater power uncertainty
ranged from 1+0.1 W to 3+0.31 W, respectively. A summary of test uncertainty measurements
is given in Table 5.

10 Type-T thermocouples _
(30 gage) adhesivelyattached Kapton Heater location
w/ Traduct 2902 epoxy (1.5 in.x 0.5 in. outer surface)

Figure 11. Thermocouple locations on N-BK7 window.

Figure 12. Thermocouple locations on FS window.
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Table 5. Labview System Calibration.

Calibrator Average Average
Input Measured Measured

Temp (°C) Temp (°C) STDEV (°C)
20.00 20.66 0.17
40.00 40.19 0.22
60.00 59.30 0.14
80.00 78.03 0.12
100.00 96.07 0.16

Table 6. Test Uncertainty

Test Parameter

Uncertainty Value

Heater power (V and I)

+0.07 W (1 W) to £0.12 W (3 W)

Heater Power (V and R)

+0.1 W (1 W) to £0.31 W (3 W)

Thermocouple Location

+0.125 inches

Labview Thermocouple 0.7£0.14°C
Calibration
Thermocouple Calibration -0.3°C

5.3 Temperature and IR Measurements

5.3.1 NBKY7 Optical Material

Both temperature and IR measurements were obtained for the front and back side (thermocouple
side) for heater powers of 1W, 2W and 3W until steady-state conditions were obtained. IR
images are shown in Figure 13, for the back surface for 1W and 3W. The gray images provide a
clearer view of the surrounding hardware and thermocouple locations compared to the color plot.
The infrared emissivity (€) for the camera was set at 0.85, distance from camera to window, 0.33
meters, and air temperature, 20°C. The thermocouple bead temperatures are lower due to the
lower emissivity value of the epoxy. The 0.85 value was obtained by comparing the
thermocouple temperature to a window temperature adjacent to the bead. The IR images
indicate that the support pads on the window holder did not influence the isotherms, and as
expected the highest temperatures are at the top near the heater. The heater power settings
provided vertical temperature differences of 28 and 63°C. Table 6 compares the thermocouple
and IR temperatures and shows average temperature differences of -0.26+0.73°C and -

1.0+£0.85°C for 1W and 3W.
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Figure 13. IR images of NBK7 back side.

Table 7. Comparison of Thermocouple and IR Temperatures, NBK7 Back Side.

Temperature (°C)
IR IR

(¢e=0.85) | 1W DIFF (¢=0.85) | 3W DIFF

TC NO. TC (1W) 1W (TC-IR) | TC (3W) R\ (TC-IR)
TC1 44.6 46.3 -1.98 77.17 80.7 -1.3
TC2 37.9 37.7 0.31 58.01 59.4 -0.3
TC3 32.2 32.0 0.64 44.42 43.7 1.0
TC4 26.9 28.2 -0.53 32.94 34.1 -1.6
TC5 27.0 28.0 -0.26 33.01 33.8 -1.2
TC6 26.1 274 -0.55 31.17 32.5 -1.8
TC7 25.7 27.0 -0.55 30.26 31.6 -1.9
TCS8 25.6 26.3 0.13 29.75 30.1 -0.9
TC9 24.9 25.6 0.17 28.18 28.3 -0.8
TC10 24.4 25.2 0.03 26.99 273 -1.1
Ave. -0.26 Ave. -1.0
STDEV 0.73 STDEV 0.85

The front side images were obtained by rotating the window 180° along the vertical axis as
shown in Figure 14, for heater powers of W, 2W, and 3W. Again, the window supports do not

affect the isotherms. A comparison of thermocouple and IR temperature data is given in Table 7

and shows average temperature differences of -0.26+0.73°C (1W), -0.29+£0.6°C (2W), and -
0.17+£0.9°C (3W).
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Figure 14. IR images of NBK7 front side.

Table 8. Comparison of Thermocouple and IR Temperatures, NBK7 Front Side.

Temperature (°C)
1w IR 2W IR
TC IR (£=0.85) DIFF (e=0.85) DIFF (e=0.85) 3W DIFF
NO. TC (1W) 1w (TC-IR) | TC (2W) 2W (TC-IR) | TC 3W) 3w (TC-IR)
TC1 45.03 45.9 -1.98 64.00 64.7 -0.70 82.59 82.5 0.09
TC2 37.63 38 0.31 49.70 49.2 0.50 61.51 60.5 1.01
TC3 31.96 32.2 0.64 39.05 38 1.05 46.25 44.5 1.75
TC4 26.86 27.9 -0.53 29.54 30.3 -0.76 32.92 339 -0.98
TC5 27.12 27.9 -0.26 29.84 30.2 -0.36 33.18 33.7 -0.52
TC6 26.47 27.4 -0.55 28.59 29.3 -0.71 31.48 323 -0.82
TC7 26.19 27 -0.55 28.15 28.5 -0.35 30.88 31.2 -0.32
TCS8 25.54 26.4 0.13 26.94 27.6 -0.66 29.29 30 -0.71
TC9 24.89 25.5 0.17 25.79 26.1 -0.31 27.66 28 -0.34
TC10 24.34 25.2 0.03 24.83 25.4 -0.57 26.39 27.3 -0.91
Ave. -0.26 Ave. -0.29 Ave. -0.17
STDEV 0.73 STDEV 0.60 STDEV 0.90

5.3.2 Fused Silica (FS) Optical Material

Both temperature and IR measurements were obtained for the front and back side (thermocouple
side) of the FS window for heater powers of 1W, 2W and 3W until steady-state conditions were
obtained. IR images are shown in Figure 15 for the back surface. Similar to the NBK7, the
infrared emissivity (€) for the camera was set at 0.85, distance from camera to window, 0.33
meters, and air temperature, 20°C. Again, the IR images indicate that the support pads on the
window holder did not influence the isotherms, and as expected the highest temperatures are at
the top near the heater. The heater power settings provided vertical temperature differences of
27,48 and 68°C. Table 8 compares the thermocouple and IR temperatures and shows average
temperature differences are -0.26+0.62°C, -0.05+1.05°C and 0.09£1.70°C for 1W, 2W and 3W.
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Figure 15. IR images of FS back side.

Table 9. Comparison of Thermocouple and IR Temperatures, FS back side.

Temperature (°C)
1w IR 2W IR

TC IR (¢=0.85) DIFF (¢=0.85) | DIFF (£=0.85) 3W DIFF
NO. | TC awW) 1w (TC-IR) | TC 2W) 2W (TC-IR) | TC 3W) 3W (TC-IR)
TC1 43.46 42.9 0.56 60.51 59.3 1.21 76.86 74.2 2.66
TC2 37.53 36.7 0.83 49.05 47 2.05 59.86 56.7 3.16
TC3 32.19 31.9 0.29 38.93 38.2 0.73 45.38 44.1 1.28
TC4 28.17 28.6 -0.43 31.56 31.9 -0.34 34.97 353 -0.33
TC5 28.12 28.8 -0.68 31.52 324 -0.88 34.59 35.6 -1.01
TC6 27.34 28.3 -0.96 30.4 31.6 -1.2 32.85 34.6 -1.75
TC7 26.82 27.8 -0.98 29.73 30.8 -1.07 31.86 333 -1.44
TC8 26.65 27.2 -0.55 28.82 29.3 -0.48 31.02 31.8 -0.78
TC9 25.96 26.2 -0.24 27.67 27.9 -0.23 29.34 29.8 -0.46
TC10 25.38 25.8 -0.42 26.74 27 -0.26 28.03 28.5 -0.47

Ave. -0.258 Ave. -0.047 Ave. 0.086

STDEV 0.6224 STDEV 1.0543 STDEV 1.6974

The FS front side images are given in Figure 16 and thermocouple and IR comparisons in Table
9. The average temperature differences are -0.58+0.28°C, -0.22+0.31°C and 0.09+0.53°C for
I1W, 2W and 3W.
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Figure 16. IR images of FS front side.

Table 10. Comparison of Thermocouple and IR Temperatures, FS front side.

Temperature (°C)
1w IR 2W IR

TC IR (e=0.85) DIFF (e=0.85) DIFF (e=0.85) 3W DIFF
NO. TC (1W) 1w (TC-IR) | TC (2W) 2W (TC-IR) | TC 3W) 3W (TC-IR)
TC1 39.73 41.0 -1.27 58.02 57.9 0.12 72.38 71.9 0.48
TC2 35.1 35.6 -0.5 47.8 47.4 0.4 57.85 56.8 1.05
TC3 30.51 31.2 -0.69 38.35 38.6 -0.25 44.29 443 -0.01
TC4 27.05 27.7 -0.65 31.36 31.9 -0.54 34.31 34.8 -0.49
TCS 27.06 27.3 -0.24 31.24 313 -0.06 34.02 339 0.12
TC6 26.35 26.7 -0.35 30.08 304 -0.32 32.44 32.6 -0.16
TC7 25.83 26.5 -0.67 29.39 29.6 -0.21 31.38 31.8 -0.42
TC8 25.82 26.4 -0.58 28.84 29.3 -0.46 30.64 31.2 -0.56
TC9 25.29 25.7 -0.41 27.69 28.0 -0.31 29.03 29.2 -0.17
TC10 24.78 25.2 -0.42 26.71 27.3 -0.59 27.69 28.4 -0.71

Ave. -0.578 Ave. -0.222 Ave. -0.087

STDEV 0.2849 STDEV 0.306 STDEV 0.533

Comparison of thermocouple and IR measurements show very good agreement for both windows
and different heater powers. There are differences between the front and back surfaces after the
windows are rotated, due to measurement uncertainties.

5.4 Comparison of Thermal Measurements and Model Predictions

The measured thermocouple temperatures were compared to finite element analysis (FEA)
software tools ANSYS/Mechanical and Sierra/Aria. The geometry and FEA mesh for ANSYS is
shown in Figure 17 and consisted of a 20-node HEX mesh. The mesh was also used in
Sierra/Aria by utilizing the export capability of ANSYS/Fluent and generating an EXODUS-II
model geometry. The details are summarized in Appendix A.
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Figure 17. ANSYS window geometry model and 20-node HEX mesh.

The ANSYS thermal model assumed constant properties, free convection (9 W/m?-°C), and
thermal radiation (& wingow=0.8 and € peae;=0.25). An isothermal plot for the NBK7 window is
shown in Figure 18 for 1W, 2W and 3W. Table 11 and Table 12 compare the thermocouple
steady-state temperatures and ANSY'S model predicts for NBK7 and FS windows. The model
results were higher at 1W heater power and lower for 2W and 3W for both windows.
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Figure 18. ANSYS temperature results for NBK7 window.

Table 11. ANSYS Model Results and Temperature Data, NBK7 Window.

% Difference
(ANSYS-
NBK?7 Test Results (°C) Ansys Results (°C) Test)*100/Test

TC

No. 1 Watt | 2 Watt | 3 Watt | 1 Watt | 2 Watt | 3 Watt | 1 Watt | 2 Watt | 3 Watt
1 428 61.0 77.3 431 64.8 84.9 0.6 6.3 9.8
2 34.6 453 54.7 35.0 49.1 61.7 1.1 8.3 12.8
3 294 35.6 40.9 28.6 36.8 43.8 -2.6 33 7.1
4 25.6 28.5 30.9 25.4 30.5 347 -0.9 7.1 12.3
5 25.7 28.5 30.8 25.1 30.0 339 2.3 52 10.2
6 25.1 274 293 24.6 28.9 324 -2.2 5.6 10.5
7 24.8 26.9 28.6 24.2 28.2 31.3 -2.6 4.7 9.3
8 244 26.0 27.4 23.7 273 30.0 -2.9 4.9 9.5
9 239 25.0 259 22.8 25.7 27.7 -4.4 2.6 6.8
10 234 24.1 2477 22.5 25.1 26.8 -3.7 4.0 8.5
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Table 12. ANSYS Model Results and Temperature Data, FS Window.

% Difference
(ANSYS-
FS Test Results (°C) Ansys Results (°C) Test)*100/Test

TC

No. 1 Watt | 2 Watt | 3 Watt | 1 Watt | 2 Watt | 3 Watt | 1 Watt | 2 Watt | 3 Watt
1 43.5 60.5 76.9 43.5 63.4 82.2 0.1 4.8 7.0
2 37.5 49.1 59.9 36.4 49.2 61.4 -3.1 0.4 2.5
3 32.2 38.9 454 30.7 38.0 44.9 -4.7 -2.5 -1.2
4 28.2 31.6 35.0 27.7 32.1 36.2 -1.8 1.6 3.6
5 28.1 31.5 34.6 27.4 31.6 35.5 2.5 0.2 2.6
6 27.3 30.4 32.9 26.9 30.6 34.0 -1.6 0.5 3.6
7 26.8 29.7 31.9 26.5 29.8 33.0 -1.1 0.4 3.5
8 26.7 28.8 31.0 26.1 28.9 31.7 -2.2 0.4 2.0
9 26.0 27.7 29.3 25.2 27.3 29.3 -2.8 -1.3 -0.1
10 25.4 26.7 28.0 24.9 26.7 28.4 -1.8 0.0 1.5

Measured data was also compared to Sierra/Aria as described in detail in Appendices B and C.
There was good temperature agreement between the two software tools including thermal
distortion.

5.5 Interferometry Measurements

Interferometry measurements of the optical components were made at each of the prescribed
steady-state thermal loads, using a Zygo MST, multi-surface test interferometer. This device
incorporates Fourier Transform Phase Shifting interferometry to provide simultaneous
measurement of front and back surface figure for plane-parallel optical windows. A measure of
optical thickness variation across the aperture is also provided.

Figure 19 shows the baseline measurement of the BK7 window test article at room temperature.
The nominal surface figure for both the front and back surfaces, prior to applying thermal load, is
less than 60 nm and 70 nm, respectively. The measured optical thickness variation is less than
45 nm.

Figure 20 shows the same component after applying a 3 Watt heat load to the edge of the
component for 90 minutes. The surface profiles for the front and back surface are shown to vary
by 3.8 microns and 2.7 microns, respectively. Interferometry measurements at the other heat
loads are similar in morphology, with smaller variations across the aperture. Note that the
optical thickness variation includes effects of the gradient refractive index due to the dn/dt
material properties and the heat induced by the 3 Watt load.

This interferometry data was collected in the last week of the LDRD project, leaving insufficient
time to fully reduce the data. With additional funding, the front and back surface interferometry
and the temperature measurements will be used to decouple the changes in physical thickness of
the part from the heat-induced refractive index gradient, to provide correlation and validation
between the measured optical thickness and the model predictions for these parameters.
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Figure 20. Interferometry of BK7 test window under 3W load for 90 minutes.
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5.6 SIERRA/Aria Thermal Displacement Predictions for TOP LDRD

A finite element model for lens distortion due to imposed thermal gradients was developed using
Aria [13]. Results are presented for the BK7 and Fused Silica lenses with 3 watt heater power.
A model discretization based upon an ANSY'S mesh was converted to the Genesis format and
then used in modeling both lenses. The thermal conditions are approximately those from the 3W
tests reported in 5.3. Physical properties for the BK7 and the Fused Silica are summarized in
Table 13.

Table 13: Properties used in analysis.

Property FS BK7 units
Elasticity (E) 7.27E+10 | 8.20E+10 | N'm
Poisson Ratio (V) 0.160 0.206 |-

CTE (%) 5.70E-06 | 7.10E-06 | K!
Specific heat (Cp) 741 858 Jkg!K!
Thermal conductivity (k) 1.3 1.114 | Wm-K-!
Density (P) 2201 2510 | kg'm?3
Zero strain reference temperature | 296.34 29445 | K

Additional conditions for the analysis are shown in Table 14. Also shown are the zero-strain
reference temperatures which were taken to be the reported lab temperatures for the days the
experiments were conducted. The detail of the heater is not represented by a meshed volume in
the model but its imposed energy flux into the lens is represented by a uniform flux imposed on
the set of exterior element faces best approximating the heater location. The 1.75 Watts
constitutes 60% of the measured heater power and was observed in other analyses [14] to
represent the heating boundary adequately.

Table 14: Model conditions used in analysis.

Condition FS BK7 units
Constant convective coefficient from lens to 5 W-m2K
ambient air.

Lens surface emissivity () 0.5 -

Actual total heat imposed to represent 3W heater 1.75 %
Ambient air temperature 296.34 | 29445 | K

Zero strain reference temperature 296.34 | 294.45 | K
Element type HEX20 -
Element Count 1684 -

Node Count 8372 -

Figure 21 shows the predicted steady temperature distributions for the two lenses. Notice that
the 85°C contour is absent from the fused silica lens (despite the specified ambient temperature
being 1.9°C higher). This result is consistent with the higher (17%) thermal conductivity of
fused silica which results in better diffusion of the energy into the lens. Also consistent with the
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higher thermal conductivity of the fused silica is the significantly lower position of the 35°C
contour.

Figure 21: Predicted steady thermal states for BK7 (left) and Fused Silica (right) lenses.
Contours are 35, 45, 55, 65, 75, 85°C.

The Aria analyses predict the steady temperature distributions and transfer the thermal state of

the lens to a structural simulation for calculating the displacement field. This one-way coupling
is acceptable because the deformations are small (microns) and do not significantly impact the

thermal distribution.

In addition to a reference temperature state corresponding to no strain, the displacement
calculation requires boundary conditions to establish/maintain position in the coordinate frame.
As oriented in Figure 21, the positive x-, y-, and z-directions are right, up, and out of the page
toward the reader. Relative to these directions and a centroid of the unstrained lens at the origin;
the boundary conditions were chosen so that:

e The points at (0, +R, 0) and (0, -R, 0) are stationary in x.

e The points at (+R, 0, 0) and (-R, 0, 0) are stationary in y.

e The point at (0, -R, 0) is stationary in z.
where R is the undeformed radius of the lens. Figure 22 shows the total predicted displacements
for the two materials. The CTE for BK7 being about 25% greater than that of BK7 is evident in

the results. The results look to be of the proper magnitude as the thickness of the lens at the hot
edge grows approximately the expected @HAT, where H is the lens thickness.
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Figure 22: Predicted displacements for BK7 (left) and Fused Silica (right) lenses.
Contours are 2, 4, 6, 8, and 10 microns.

Figure 23 shows a section through the lens colored by the z-displacement while the shape of the

lens is shown with the total displacement magnified.
Z displacement (microns)

Z displacement (microns

ANl oanw

Figure 23: Z-displacements (microns) as color contours
on a lens-shape with exaggerated distortion.

Figure 24 gives a comparison of the growth of the lens thickness due to 3W heating as indicated
by ANSYS [15] [16] and the current predictions. The two thermal analyses targeted agreement
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with initial temperature measurements but differ in some of the assumed details and model form.
Nonetheless, the predicted z-displacement is in substantial agreement.

Swelling of Lens Thickness on Vertical Centerplane
BK7 Lens, 3 Watt Heating

)]
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Figure 24: Z-direction “swelling” on x=0 plane comparison
of ANSYS [15] [16] and Aria Predictions.
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6. CONCLUSIONS

6.1 Significant achievements

The theory and results derived in [5] provide strong evidence for the efficacy of the theoretical
construct for tracing rays directly in a finite-element volume. The comparison to closed-form
gradient-index solutions yields reasonable results within the diffraction limit at optical
wavelengths when the maximum gradient profile across individual elements is bounded. The
initial method proposed to meet the bounding constraints is to increase mesh density for
components with large refractive index gradients, thereby decreasing the local gradient
throughout any individual element.

Moreover, the FE ray-trace theory is a new and enabling technology, allowing FE models to be
directly imported into a ray-trace code and analyzed over broad spectrum and field-angle
parameters with no modification to the base prescription file, and no additional labor imposed by
varying the parameters.

To mature the theory into a usable tool requires implementation within a commercial ray-tracing
application, validated within the optical design community. This puts the tool into the hands of
subject matter experts for broader validation across multiple applications. For this LDRD effort,
the Zemax™ ray-trace tool was chosen for its widespread use at SNL, and its open API for
implementing user-defined surfaces.

Significant progress was made in developing a Zemax UDS architecture to implement the new
ray-trace technique. This code architecture provides hooks into the Zemax menu and pop-up
dialog structure to enable additional custom finite-element functions to be inserted into the
Zemax suite of capabilities. These new functions include the ability to render a finite-element
volume in its native coordinate frame, enabling proper mating of coordinate frame axes into the
Zemax master frame. The rendering also provides various color-mapping schemes to indicate
gradient temperature profiles, nodal displacements, stress, or strain. And, it provides the
capability to visualize mesh geometry, which further enables analyses to correlate localized
optical effects with the FEM.

6.2 Follow-on effort

6.2.1 Software Development

While the UDS software architecture is well founded, the theoretical basis described in 3.4 for
mitigating surface interpolation error between the FE methods and the closed-form conic
equation were only realized near the end of the LDRD project. As such, schedule did not permit
implementation of the construct in the UDS software, and the code is thus incomplete for broad
dissemination and use. This code implementation must be accomplished using other funding
avenues, either by SNL personnel, or via contracted efforts.
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6.2.2 Software Validation

A significant laboratory test and thermal-modeling effort was expended in the course of this
project. While the thermal models were tuned and well-validated against the measured
temperatures of optical components under prescribed thermal loads, the interferometric
measurements of optical performance of these components remain to be compared to the model
predictions. Until the UDS software is complete and ready for use, these comparisons cannot be
made. Again, this validation comparison must be accomplished using other funding avenues.
Even so, performance modeling validation is an on-going process, whereby the modeling tools
are applied to many systems of various design in various environments. This endeavor is best
achieved through broad dissemination of the tools to subject matter experts in the industry and
solicited feedback from the user community.

6.3 Future Impact: Coupled Thermo-Optic Transient Analysis

As stated above, the FE ray-trace theory developed under this LDRD effort is a new and
enabling technology. It allows direct optical modeling of various physical environmental loads
that directly impact optical performance. Specifically, application of the technology can provide
insight to coupled-dynamics problems and issues of material properties prevalent in the fields of
high-energy solid-state lasers and short-pulse laser propagation dynamics.

Solid state lasers provide significant improvements in efficiency over other high-energy laser
designs, such as chemical or gas lasers. However, the thermal loads induced by the extremely
high intra-cavity circulating power are problematic in maintaining a static geometry in the
resonant cavity. Thermal expansion of the gain medium and the resonator optics cause the cavity
to deform, often causing the resonator to fail after operating only fractions of a second.

The coupled thermo-optical dynamics of the resonant cavity are difficult to model and
understand without a fully coupled modeling capability. The cavity design, alignment, and
surface figure of the resonator optics serve to establish the initial optical intensity profile within
the cavity. Material absorption parameters cause fast-rise thermal transient behavior with
corresponding expansion and changes to the index of refraction. These changes impact the
performance of the resonant cavity, which then modifies the optical intensity profile and couples
with the distortions in the fashion of a feed-back loop.

Other non-linear effects exhibited by propagation of high-energy lasers, such as self-focusing
and ablation, are also compounded by the fast-transient, self-induced thermal effects of optical
energy through various media. Understanding these coupled dynamics is predicated upon the
ability to model the coupled physics of the resonator behavior. The FE ray-trace capability
allows the optical performance model to be directly coupled with the thermal-loads model,
enabling a fully coupled analysis. Understanding this coupled behavior is a key step in
mitigating the thermal effects and realizing high-energy solid state laser designs.
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APPENDIX A: THEORETICAL BASIS

Ray tracing in a finite-element domain
using nodal basis functions
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A method is presented for tracing rays through a medium discretized as finite-element volumes. The
ray-trajectory equations are cast into the local element coordinate frame, and the full finite-element in-
terpolation is used to determine instantaneous index gradient for the ray-path integral equation. The
finite-element methodology is also used to interpolate local surface deformations and the surface normal
vector for computing the refraction angle when launching rays into the volume, and again when rays exit
the medium. The procedure is applied to a finite-element model of an optic with a severe refractive-index
gradient, and the results are compared to the dosed-form gradient ray-path integral approach. ©2014

Optical Society of America
OCIS codes:
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1.

The subject of ray tracing through inhomogeneous
refractive media has been addressed at varying lev-
els of detail for a number of decades. Early publica-
tions [1-4] concentrated on generalized extension of
ray-trace theory within a known gradient field
represented by a closed-form equation. This theory
is well formed in terms of differential calculus,
and with the change of variable introduced by
Sharma et al. [3], it can be easily cast into a state-
space notation. More recent publications have con-
centrated on application of the theory using numeri-
cal methods in a discretized, or finite-element,
volume, which lends itself well to computer analysis
of optical propagation through pseudo-randomly
distributed gradient volumes [5-8]. These latter ap-
proaches begin to integrate and exploit the rich and
mature finite-element numerical methods developed
by analysts in the fields of structural mechanics
and heat transfer. Indeed, Gatej et al. [8] developed
an approach to couple commercial finite-element
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(080.5692) Ray trajectories in inhomogeneous media; (120.6810) Thermal effects.

method (FEM) and ray-tracing simulation software
via an intermediate processing step.

This paper extends these approaches by fully inte-
grating the finite-element numerical methodology to
enable the tracing of rays directly within a discre-
tized volume. The approach is most similar to that
presented by Richerzhagen [6], with the exception
that the refractive index is not assumed to be
constant (homogeneous) throughout the discrete
element, but rather varies continuously across the
element volume with exact values defined at nodal
positions and a formalized set of interpolation “shape
functions” to derive values at intermediate points
within the volume. In this approach, the generalized
gradient-index ray-trace equations are first trans-
formed in terms of the local coordinate frame of a
solid (3D) element. The shape function of the element
is then used to calculate the local index gradient, and
the resulting system of equations is cast into state-
space form for implementation by a numerical solver.

The approach outlined in this paper may be im-
plemented in a commercial ray-trace application
through a customization API currently provided by
most software vendors [9,10]. This eliminates the
need for intermediate processing and analysis to



enable ray tracing through the inhomogeneous
medium. Software can be written to directly read a
finite-element grid file and trace rays through the
volume upon request by the host application. This
can potentially be used to fully couple thermal and
ray-trace analyses, enabling detailed study of
intra-cavity thermodynamic effects in high-energy
lasers, or the performance impact of thermal loads
on space-borne optical systems. The approach is also
extensible to analyzing optical performance in the
presence of any number of other distributed material
properties.

2. State-Space Ray-Trace Equations in
a Gradient-Index Medium

A. Mathematical Basis
The differential ray equation is given in [11] as

d

ds M

dr
[n(r} E} = Vn(r),

where r is the position vector of a point on the ray,
n(r) is the refractive index of the medium at position
r, and ds is a differential portion of the arc length s
along the ray.

Sharma ef al. [3] introduced a change of variable in
this equation, to form

d2
dt—;:nVn =

1

1

Vn? =
=3

(2)

]

where t = [(ds/n) and dt=(1/n)ds. In Eq. (2), the
explicit dependence of refractive index on position
has been dropped for convenience, this dependency
being implied by the gradient operator. To be com-
plete, it is also noted that Sharma ef al. defined an
optical ray vector T as

dr

Q—n_
o ds’

T=u

(3

The implications of these changes have been de-
scribed in detail [3] and will not be further examined
here. Instead, the new formulation will be used to en-
able an abstracted concept of the ray trajectory based
upon a Newtonian dynamics approach.

While the change of variable ¢ introduced by
Sharma et al. is literally a dummy variable of inte-
gration, one can easily abstract upon the concept
of t as an independent “pseudo-time” variable. In this
context, an abstract perspective of the optical ray
vector T, defined in Eq. (3), can be obtained, namely
that T is the “pseudo-velocity” of a point r on the ray,
i.e., the first derivative of position r w.r.t. {. Likewise,
Eq. (2) can be abstracted to represent the “pseudo-
acceleration” of a point r on the ray. This abstraction
allows assembly of these “equations of motion”
into a state-space system of equations, from which
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an elementary coordinate transformation can be
derived to enable direct application within the
finite-element domain.
To elaborate, we expand Eq. (2) into 3D space to
yield
dzr_d2x5+d2 ‘+d2‘zje
a? a2’ @ T ar

At this point, it is useful to introduce a shorthand
notation {-}, which denotes the derivative of a state
variable wr.t. ¢, ie.,

1_ .
= EVn‘a. (4)

=2

We then define a state vector X, composed of the
position and velocity of point r, in 3D space:

.

il
z
Finally, we may combine Egs. (2), (4), and (5) into a

full state-space representation of the differential
equations of motion for a point that lies on the ray,

ST

where 0; denotes a square zero matrix of dimension 3
and I4 is the 3 x 3 identity matrix. In this equation,
the gradient of the index acts as a “forcing function”
that imparts a “pseudo-acceleration” on the ray as it
travels through the medium.

Integration of this set of differential Eq. (6) w.r.t.
the independent “pseudo-time” variable yields the
ray trajectory in a standard Cartesian coordinate
frame. Such integration requires knowledge of the
gradient-index variation as a function of position,
either by a closed-form equation, or via an interpola-
tion algorithm applied to points within the volume
where the refractive index is known. The finite-
element methodology provides a useful framework
for the latter approach.

03
03

1 3
03

03

1 2
I } 5 Vn®. (6)

B. Finite-Element Methodology

Finite-element (FE) theory is used in many engineer-
ing fields to reduce complex problems of partial dif-
ferential equations to a numerically tractable form.
Experts in the fields of computational mechanics
have developed a rich theoretical basis for discretiz-
ing volumes and surfaces into collections of nodes
that are grouped into discrete finite elements.

The FE methodology also provides functions for
interpolation of geometry and for other parameters
(e.g., displacement, temperature) defined at the
nodes, as well as for calculating gradients of these
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parameters within the space defined by the element.
These functions are understandably dependent upon
the geometry of the particular element, i.e., how
many nodes are contained and the “shape” of the
element (triangular, quadrilateral, tetrahedron,
hexahedron, etc.) to which they belong. However,
at the most basic level, all these functions are derived
via a mapping of the node geometry in physical
Cartesian space to a unit-normalized geometry of
coordinates referenced to a local origin within each
element. For example, a 20-node hexahedron
element extracted from a discretized FE mesh of
an optical component may have the physical shape
shown in Fig. 1(a). However, in the local coordinate
frame (¢, 5, ¢) of Fig. 1(b), it is mapped to a perfect
cube, centered on the origin, and bounded in all
dimensions within the range [-1, 1].

Before continuing, it is important to note some key
attributes of this mapping. First, there exists a trans-
formation between the local coordinates and the
physical coordinates (although the inverse transform
may be ill posed; see Appendix B). For the element
shown in Fig. 1, this transform contains second-order
powers of (&, n, ) (imagine fitting a quadratic equa-
tion through any three points that make up an edge
of the element). Second, every element contained in
the optical component shown on the left side of
Fig. 1(a) has its own coordinate frame. Therefore,

g
n
15
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17] 18 E-’
7 1 =]
40 o 3

)

Fig. 1. HEX20 element in (a) physical coordinate space and in (h)
local ecoordinate space.
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the mapping of local coordinates to physical coordi-
nates (and wvice versa) is unique for each element
within the volume. Third, the nodes of an element
are numbered in a specific order (see Appendix A)
that defines the orientation of the local coordinate
axes within the element, and upon which the inter-
polation and other methods of the FE construct rely.
This ordering must be maintained for any analyses
that utilize these methods. And finally, neighboring
elements share the nodes of their neighboring faces.

While a complete treatise on finite-element theory
is beyond the scope of this paper, these important
aspects should be retained for this discussion. The
reader is referred to the literature [12,13] for further
description of finite-element theory.

The remainder of this paper provides a theoretical
basis for casting the physical ray-trace Eq. (6) into
the local coordinate frame (&, 5, {) of a finite element.
This new formulation allows direct integration
within the (&, 5, {) domain using FE methods to yield
the ray trajectory within the curvilinear space of the
local coordinate frame. Within this frame, element
face crossings are easily found, due to the bounding
[-1, 1] geometry defined by the element. At the inter-
faces of neighboring elements, a simple coordinate
transformation may be applied to cast the ray into
the new local coordinates of the neighboring element.
In this way, a ray may be traced through the optical
component, element by element, until it exits the
discretized volume.

C. Ray-Trace Equations in Local Element Coordinates

To cast the ray-trace equations into the FE local
element coordinate frame requires each reference
to (x,y.z) in Eq. (6) (whether explicit, or implied)
be transformed to (& #, {) coordinates. Beginning
with the gradient of the squared refractive index,
we expand the notation to explicitly show depend-
ence on position (x,y,z), namely

_[£]
s

where n is a function of position, i.e., n = n(x.y, 2).

Transformation of the gradient into (&, 5, {) space is
accomplished via the Jacobian matrix of the element,
J, as follows:

(7)

dz

an® & Y & @ dn?
3 as r?f as 3 552
dn® | _ | &x & & an= | _ | dnZ
TN =% o o || > o (8)
an* o ¥ g || an® an®
iz a;  al  af dz al

where formulation of the Jacobian matrix is defined
by the FE methodology [13] (see Appendix A). Note
that 7 is a function of position in the local coordinate
frame, 7 = J(&,7.{), and the position dependency of
nis also mapped to (&, 7, {) by the FE shape functions.



A similar approach is used to transform the
“pseudo-velocity” vector into local coordinates, as
shown in Eq. (9):

. dx o v [de :
S_12]_|E s E|z|_ ¢
Y — Y | — | @ ¥ D 1| — .
yi=\|F|=l o x||F|=T |1] @
2 dz & & o ||d 7

dt di  dp  df 3 &

»

The “pseudo-acceleration” vector is transformed
by first noting that it is the derivative of “pseudo-
velocity” w.r.t. £. This derivative operation is applied
to Eq. (9) to yield

X
i Y d jT gf;
dt

P
‘}7 — —
5 dt

+J7 +J7

g e
g g

(10)

All of the components are now available to cast the
ray equations into the (£, , {) domain. By substitut-
ing, rearranging, and assembling from Egs. (6)-(10),
we derive the ray “acceleration” expression

; * ;

1 ", dJjr
AR E AR P N
¢ an® ¢

cast purely in terms of the (&, 5, {) domain. Full ex-
pansion of each component using the FE construction
of the Jacobian, its derivative, and the gradient is
given in Appendix A.

It is worth pausing at this juncture to note some
important aspects of Eq. (11). It is the analog of
Eq. (2), cast in the (¢ n, {) domain. However, there
are two forcing function components on the right side
of Eq. (11), whereas only one exists in Eq. (2). The
left-most bracketed term of Eq. (11) is seen to be pro-
portional to the gradient of n? in the (¢, 5, {) domain,
in keeping with Eq. (2) in the physical domain. How-
ever, the second bracketed component carries a
dependency on both velocity and the rate of change
of the Jacobian, which has no apparent analog in the
physical domain.

Introduction of this component is easily under-
stood by considering the mapping transformation
from physical to local coordinates. For the special
case of a perfectly homogeneous medium, the gra-
dient of n? in the physical domain is zero, and the
resulting ray trajectory is linear. However, when
mapping the “skew aspect” of the element in physical
coordinates [Fig. 1(a)] to the cubic volume [Fig. 1(b)]
in local coordinates, the space within the element
must necessarily become a curvilinear space. In
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short, a straight ray path in physical coordinates
is generally a curved ray path in local coordinates.
This curvature implies a “lateral acceleration” of
the ray in local coordinates, caused purely by the
coordinate transformation. In this context, the sig-
nificance of the second bracketed term of Eq. (11)
becomes clear.

The magnitude of the second term is wholly depen-
dent on the skew aspect of the element within the
physical coordinate space. If the element shape is
a perfect cube in physical coordinates, the mapping
to local coordinates is linear and the Jacobian of the
element will be constant (zero derivative), thus
removing any dependency on “velocity” within the
local coordinate frame.

D.

At the interfaces between elements, the ray equa-
tions must transition from the local coordinate frame
of the terminal element to that of the entrance
element. While one might consider transforming to
physical coordinates and ray direction cosines as
an intermediate step in this process, it is beneficial
to exploit aspects of the geometry to obtain a single-
step transform, which increases computational
efficiency and reduces the potential for both imple-
mentation errors and accumulated numerical errors.

As stated previously, neighboring elements share
the nodes of their neighboring faces. In the FE do-
main, this abutment of neighboring elements can
be pictured as two cubes (for hexahedron elements),
which share a face, but which are centered on sepa-
rate element coordinate frames. This is graphically
depicted in Fig. 2, where an arbitrary orientation
of the two local coordinate frames has been chosen
for illustrative purposes.

In general, the local coordinate frames of each
element are independently oriented according to
the node-ordering scheme assigned by the FE grid
generation software. Note that shared nodes on
the neighboring faces are assigned different node
numbers within each element. Indeed, this is

Inter-Element Ray Transitions within the Volume

Element 2:
|

&

Element 1

Fig. 2. Neighboring hexahedron elements in the finite-element
domain.
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required for a consistently ordered numbering
scheme within coordinate frames that maintain a
right-handed orientation. For the case shown, it is
seen that element 1 shares its nodes numbered [2,
3, 7, 6, 10, 19, 14, 18] on the & = +1 face, with
element 2 nodes numbered [2, 3, 4, 1, 10, 11, 12,
9] on the £y, = -1 face. These are physically the same
nodes, with the same properties (temperature, re-
fractive index, ete.), and are simply assigned a differ-
ent number within each element to maintain the
consistency of the FE construct.

Consider for a moment a ray traveling through
element 1 and incident upon its & = +1 face, such
that it exits the element and enters element 2, on
its { = -1 face. As the ray transitions from element
1 to element 2, it crosses the element boundary, and
its orientation must be transformed into the new
frame. This transformation involves both the local
master element coordinates and the ray direction
at the interface. Note that, although the refractive
medium is continuous at the boundary and no physi-
cal refraction or reflection occurs, the curvilinear
mappings of the two frames are completely indepen-
dent and may cause an apparent discontinuity in ray
direction across the boundary in the abutted local
coordinate spaces. However, when converted to
physical coordinates, any such discontinuity is recti-
fied by the individual FE transformations of the two
elements.

In the plane of transition shared by the neighbor-
ing elements, the ray coordinates maintain the same
absolute values in both frames, and are merely trans-
formed by the relative rotation of the axes, i.e.,

& &
e | =T m (12)
{2 {1

where T is the transformation matrix. An algorithm
to derive a generalized transformation matrix
between any two arbitrarily oriented neighboring
elements is given in Appendix C.

The change in the local coordinate ray direction as
it transitions from element 1 to element 2 is derived
from Eq. (9). Since the “pseudo-velocity” (ie., ray
direction) in physical coordinates is continuous at
the boundary, we deduce that

x €1 &
V=T in | =T5| % (13)
z &1 2
which can be rearranged to yield
& &
'i‘.a = JETJ{ '}‘1 (14)
$o &1

Note the Jacobian matrices, 7, and 74, are derived
at the point of transition between the separate local
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coordinate frames of element 1 and element 2, re-
spectively. Also note that this formulation bypasses
direct calculation of the ray direction cosines in
physical space, which would involve interpolating
the refractive index at the boundary and possibly in-
troduce additional errors that could accumulate at
successive element interfaces as the ray propagates
through the FE volume.

3. Ray-Trace Algorithm

A basic set of assumptions must be fulfilled prior to
launching the ray-trace algorithm. These include the
following:

A. The incident (incoming) ray definition
complete and available, including the following:

8

i. The intersection of the ray with a known refer-

ence plane in physical coordinates.

ii. The ray direction cosines w.r.t. the physical
coordinate axes.

iii. The wavelength of the representative ray (if the
FE medium is dispersive).

B. The refractive index of the ambient medium at
the point of incidence is known.

C. The full set of nodes for the optical component
and their associated properties are available, includ-
ing the following:

1. Node ID number.

ii. Nominal position in physical coordinates.

iii. Displacements due to load conditions, in physi-
cal coordinates.

iv. Refractive index squared at the node. This can
be a constant, or a function of material properties,
wavelength, and/or any other nodal parameters,
including position and temperature.

v. Nodal values for any parameters required to
compute the refractive index at the node (tempera-
ture, stress, etc.).

vi. Alist of element ID numbers for each element to
which the node belongs.

D. The full set of elements making up the optical
component are available, including the following:

i. Element ID number.

ii. The element type (hexahedral, tetrahedral,
etc.).

1ii. The number of nodes contained in the element.

iv. The node ID numbers of each member node,
correlated to the ordered node number within the
element.

E. List of nodes (node ID numbers) that lie on the
front surface.

F. List of nodes that lie on the back surface.

Once these data have been registered, the FE ray-
trace algorithm may proceed. The general approach
is different from that outlined in [5], since the
Jacobian of solid elements required to model the
transmissive optical component is a function of posi-
tion. The algorithm proceeds as follows:



1. Locate the element the ray strikes. A multi-
tude of conceivable methods to achieve this goal cer-
tainly exist. Choice of method should include the
user’s requirement for computational efficiency
and memory storage. The method implemented for
this paper is as follows:

(a) Estimate the ray incidence point by calculat-
ing the intersection of the ray with the nominal front
surface in physical coordinates. If the surface is a
conic of revolution, this can be accomplished using
the classic technique of solving for ray intersection
given a ray reference point, the direction cosines,
and the conic equation.

(b) From the list of front-surface nodes, query each
node position to find the nearest nodes to the esti-
mated ray intersection point. A brute-force search
is sufficient, although some advanced algorithms
may prove more efficient.

(c) For each nearest node, query the list of
elements to which it belongs, and find the set inter-
section of this list with those of the other nearest
nodes. This set intersection quickly eliminates ele-
ments that do not contain all the nearest nodes.
For the HEX20 elements used in the example FE
model, it was found that the critical number of near-
est nodes is two. This guarantees at least one candi-
date element will be found, and possibly more. For
certain skew geometries, it was found that three
nearest nodes might not belong to one common
element, resulting in an empty set intersection.

(d) Determine whether the ray strikes the first
element returnedin step (c). Again, a number of meth-
odstomake this determination may exist. The method
used for this paper is a modification of the point-in-
polygon algorithm commonly used in computational
solid geometry (CSG) applications. Another method
would be to convert the physical coordinates to local
coordinates in the element of interest, as shown in
Appendix B, and determine whether these local
coordinates are bounded in the range [-1, +1].

(e) If it is determined that the ray does not strike
this element, compute an error direction and iterate
from step (d) for the neighboring elements, until the
incident element is found.

2. Convert the physical coordinates of the inter-
section point to local coordinates in the incident
element, as shown in Appendix B. Note that the local
coordinates of the intersection point must be
bounded in the range [-1, +1], in each axis.

3. Interpolate the refractive index of the element
at the intersection point, using the element shape
functions (see Appendix A).

4. Calculate the surface normal at the point of
intersection.

5. Determine the ray refraction (in physical coor-
dinates) at the point of incidence, using the ray direc-
tion cosines, the ambient refractive index, the
element refractive index, and the surface normal
at the point of intersection.

6. Calculate the Jacobian of the element at the
intersection point (see Appendix A).
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7. Determine the ray “pseudo-velocity” (in local
coordinates) using Egs. (3) and (9), to form

é x cos a
al=J7"y :J‘Tn[cosﬁ] (15)
¢ z cos 7

where the vector terms are the direction cosines of
the refracted ray (in physical coordinates) at the
point of incidence.

8. Integrate the ray trajectory through the FE,
using Eq. (11), until it intersects an element face,
defined by a &, 5, or ¢ value of [-1, +1].

9. Determine whether the terminal face of the
element has a neighboring element, and

(a)if it does have a neighboring element (ray is
entering another element), derive the element-
transition ray transformation as outlined in the
previous section, and iterate from step 8.

(b) if it does not have a neighboring element (ray
is exiting the FE volume),

i. use the element shape functions to interpolate
the refractive index and the exit position in physical
coordinates.

ii. calculate the ray direction cosines of the exiting
ray (inside the element, and in physical coordinates)
by inverting Eq. (15), to yield

COS g
[cos ﬁ} ==J7 5 (16)
cos n ¢

iii. Determine the refraction of the exiting ray
(in physical coordinates), using the same method
of step 5.

This algorithm is generalized for a nonsequential
ray-trace capability. As written, under certain cir-
cumstances rays may enter and exit the same
surface, or exit through edges of a component. For ap-
plication within a sequential ray-trace engine, these
cases must be monitored to cull rays that do not
encounter each surface in a sequential fashion.

4. Implementation Results

The algorithm described in Section 3 was imple-
mented using MATLAB tools and scripting language.
The discretized FEM of a 152.4 mm diameter by
19.05 mm thick optical window, shown in Fig. 1,
was created using the ANSYS Workbench finite-
element modeling application. A script was created
to read an ANSYS ASCII output file directly into
the MATLAB workspace. The FEM ray trace was
then performed on the discretized volume.

To verify performance of the algorithm, a compari-
son method similar to that described in [6] was
implemented. In this approach, a closed-form equa-
tion for a gradient refractive index is used to gener-
ate index values at each node. The FEM ray-trace
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results are then compared directly to the closed-form
ray-trace solution.

For the purpose of this comparison, the closed-form
expression used for the refractive index was chosen
to be

n?=25-155x10"*(x2 + y?). (17

where x and y are in units of millimeters. This cre-
ates an arbitrary, but severe, radial gradient profile
ranging from 1.265 at the edge of the window to 1.581
at the center. Note that units are important in this
equation to ensure the refractive index never falls
below the vacuum index of 1.0 at the edge of the
component. Here, the node position read from the
ANSYS file was used to calculate the nodal
refractive-index value, according to Eq. (17).

A uniform random number generator was used to
create a variety of ray positions and directions to be
launched into the medium. The results of one such
ray are shown in Fig. 3. The trajectory of this ray
through the FEM volume is shown in Fig. 4. Note
that the optical component is discretized into four
element layers. At each of the three element interfa-
ces, an element transformation is performed.

By comparing these trajectories to those obtained
via direct integration of Eq. (6) using the closed-form
gradient-index Eq. (17), the error in the FE solution
may be obtained. For the given ray, the error plot is
shown in Fig. 5. Since the refractive index of Eq. (17)
is not dispersive, it makes little sense to report the
error in fractions of a wavelength. However, note that
the final error is less than 2 nm in each axis, and
this is much smaller than 1/100th of a wave at the
shortest wavelengths of the visible spectrum.

By observation, the increasing trend of the error
does elicit some concern for generalized application
of the method to other component geometries. The
exponential growth of the error may generate very
large errors for thicker components and longer path
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Fig. 3. Ray launch into finite-element volume.
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Fig. 4. Ray trajectory (a) through the FEM volume and (b) in X
and Y axes along the Z thickness of the optical component.

lengths. Initial findings on limitations of the FE
method have shown that the error is cumulative from
element to element. Also, the error is dependent
upon the severity of the gradient index experienced
by the ray along its trajectory. For instance, normal
incidence rays launched near the center of the radial
gradient component experience almost no gradient
and exhibit very little error, while transverse rays
incident at the edge of the window experience an
extremely severe gradient with very large errors.
By jointly considering these two effects, an error-
bounding metric may be postulated based upon the
severity of the gradient contained in any single
element. This, in turn, leads the modeler to discretize
an optical component such that the index gradient is

FEM Raytrace Error
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Fig. 5. Error in FE ray trace shown in Fig. 4, compared to closed
form solution.
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Fig. 6. Error in high-density mesh FE ray trace, compared to
closed form solution.

minimized across all the contained elements. If the
gradient is deemed to be sufficiently large, the
volume can be meshed to a finer resolution, thereby
decreasing the gradient across any given element.
To test this theory, the optical window was re-
meshed to a much finer resolution, creating eight
element layers across the thickness of the component
[as opposed to the four layers shown in Fig. 4(a)l.
Using the same gradient Eq. (17), the FE ray trace
was repeated for the same incident ray. The resulting
error for the fine-mesh ray-trace solution, in com-
parison to the closed-form solution, is shown in Fig. 6.
Note that while the error is still increasing, the
overall magnitude has been reduced by 2.5 orders
of magnitude, lending credence to the postulated
assertion regarding mesh density. Since increased
mesh density carries a cost in data storage and com-
putational burden, effort should be made to define a
bounding error metric that can be used to guide
decisions regarding appropriate mesh density.

5. Conclusions

By employing the full finite-element construct for
tracing rays through a gradient-index medium, an
instantaneous ray path may be derived, eliminating
the need for an intermediate processing step to inte-
grate FEM data with an optical ray-trace package.
This ability enables rapid query of optical perfor-
mance over a number of specific parameters, includ-
ing field angle, wavelength, and misalignment
impacts of any upstream components. While the
approach does contain inherent errors due to the
limitations of interpolation shape functions and their
derivatives, these errors can be managed to an
acceptable level by discretizing the component to a
sufficient resolution. Moreover, it is conceivable that
an error-bounding metric may be defined, based
upon the maximum gradient across any given
element in the volume, such that the errors are guar-
anteed not to exceed an upper limit. Such a metric
may be used to refine the mesh to a sufficient reso-
lution to minimize errors to an acceptable level.
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Appendix A: HEX20 Finite-Element Construct

A normalized finite element consists of a local coor-
dinate frame, a node-numbering scheme defined
within that frame, shape functions used to interpo-
late nodal parameters, and shape-function deriva-
tives used to compute the Jacobian and gradients
of the nodal parameters. In general, all finite-
element types carry a specific construct and method-
ology to accomplish these computations. While this
study is limited to the use of solid hexahedral ele-
ments with 20 nodes, the approach may easily be
generalized to other element types using the method-
ologies found in the literature. It is noted, however,
that for the application considered herein, the use of
lower-order elements may represent some compro-
mise in the geometric representation of the optic
as well as the inter-element gradients appearing
in Eq. (4).

1. Master Element Coordinate Frame

Hexahedral solid elements utilize a local master
element coordinate frame with three orthogonal
axes, typically denoted (&, 5, {). Note that the element
is a perfect cube in the local coordinate frame,
bounded in the range [-1, +1] in each axis, as shown
in Fig. 1(b).

2. Node Numbering

In order to maintain consistency of numbering and
methodologies between elements of the same family,
node ordering is first defined for the lowest-order
element of the class containing the least number of
nodes, and then extended to the higher-order ele-
ments of the class. For the hexahedral element,
the lowest-order element contains eight nodes—
one located at each corner. This type of element pro-
vides only linear interpolation methods between
each node. To obtain higher-order interpolation, it
is necessary to include additional nodes along each
“edge” of the element, commonly referred to as
“mid-side” nodes. The HEX20 element, as shown
in Fig. 1, contains 20 nodes: eight corner nodes
and 12 additional mid-side nodes along each edge.
The numbering scheme is listed in Table 1.

Note that the first eight nodes define the corners of
the element, just as for the HEX8 element. The first

four nodes lie in the { = -1 plane, while the second
Table 1. Mode Numbering for a HEX20 Element

Node No &, L) Node No. £, L)

1 (-1,-1,-1) 11 (0,+1,-1)
2 (+1,-1,-1) 12 (-1,0,-1)
3 (+1 +1.-1) 13 (0,-1,41)
4 (-1 +1.-1) 14 (+1,0,41)
5 (-1,-1,4+1) 15 0,41, 41)
6 (+1, -1, +1) 16 (-1,0,41)
7 (+1 +1.41) 17 (-1,-1,0)
8 (=1, 41, 41) 18 (+1,-1,0)
9 (0,-1,-1) 19 (+1, 41,0
10 (+1,0,-1) 20 (-1,4+1.0)
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four lie in the { = +1 plane. The mid-side nodes are
numbered sequentially in a similar fashion, with the
last four nodes lying in the { = 0 plane.

3. Shape Functions

Shape functions are used to interpolate nodal param-
eters at points (&, , {) that lie between nodes within
the element. Specifically, they are used to calculate a
weight value that is applied to the subject parameter
of each node, in accordance with the proximity of the
(& 1, £) point of interest. The shape functions of a
HEX20 element are listed in Table 2.

By multiplying the calculated weight value of each
node by the subject parameter of that node and sum-
ming over the set of all nodes, the interpolated value
is derived. This is shown mathematically in Eq. (A1):

20
pEnO =) N (A1)
i=1

where N, is the ith shape function, caleulated at (£, 5,
{), and p; is the value of the subject parameter p at
node i. This method of interpolation can be applied to
any parameter that is defined at each node within
the element (e.g., position x, y, or z, in physical coor-
dinates, temperature, refractive index, etc.).

Note that for points (£, 5, {) that coincide exactly
with a node position, the shape functions collapse
to yield a weight of one at that node, and zero for
all other node weights. In this regard, the shape func-
tions maintain a consistent method of interpolation
throughout the element volume, including the actual
node positions.

Table 2. Shape Functions of a
HEX20 Element

Shape Function

Ni=-31-91-nA -2+ &+n+0)

Ny=-31+81-n1-OE2-E+n+0)
Ny=-114+81+nA-O2-E-n+)
Ny=-11-914+nA-0@2+&-n40)
Ny=-31-81-nA4+02+E+n-9)
Neg=-§14+91-mA+2-E+n-0)
Ny =-214d14+nA+02-E-n-1)
Nyg=-31-14+nA+02+&=-n=0)
Ny =3(1-8(14+8(1-n(1-0)

Ny =141 -m1+n1-2)

Ny =11+4801-81+n1-0)
Ny =11 -1 -l +nl-{)
Ny =11-14+a(1-n1+)
Ny =11 +4+81-mn1+mn1+0)
Ny =l1-8014801+mn1+0
Nig=21-1 -1+ +0
Ny =11-1-n1-0(1+0
Ny =11481-p1 -1+
Ny =10+814+mA-O(1+0)
Ny =11-51+pA -1+

F18 APPLIED OPTICS / Vol. 53, No. 24 / 20 August 2014

60

4. Jacobian Matrix
The Jacobian matrix is defined as

T
|2 2 2]
al  af  af

Derivation of this matrix in the FE construct is ac-
complished by implementing Eq. (Al) and replacing
the parameter p with the physical coordinates (x,y,z):
20
x(En.0) =) Ni&nc
i=1

O)x;

20
yEnO =D NiEnQy;
i=1

20
2En.0) =) Nién Oz

i=1
In matrix notation, this can be written as

X1

Y1 =
Xg Y2 22

szu Y20 Zqu

And in this form, it is clear that the only components
that have dependency on (&, i, {) are the shape func-
tions N;. Indeed, the node positions are constant.
Therefore, the Jacobian matrix derivation becomes

[x v z]=[N1 Ny - Ny

Ny aNs aNa2g X1 Y1 oz21

aZ 9 az Xe ¥ 2

_ | aN;  aN, Nag 2 2 2
T=|%" & r3r: : : Lo (A3)

% % % Xop Yoo 220

Equation (10) also requires the derivative of the
Jacobian w.rt. “pseudo-time.” This is accomplished
by extending the approach in Eq. (A3), where

aN; aNs _ dNs X1 Y1 =1

E 0 4 . . .
AT _d| N, &N, | Ny || %2 Y2 22 (A4)
di ~ dt| o o an : : 0

& & % |jﬂau Yao Zqu

Again, the node positions are constant, so the time
derivative only applies to the matrix of shape-
function derivatives. The chain rule may be applied
to this matrix derivative to further expand its com-
ponents into a form that is dependent on the second
derivatives of the shape functions and the “pseudo-
velocity” in the local coordinate frame. It is important
to note that for elements with only first-order
shape functions, the second derivatives are zero and,
hence, so is the rate of change of the Jacobian. The
second derivatives of the HEX20 shape functions
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in (& n, {) yield a large, segmented matrix with 180
components. The final form of the derivative of the
Jacobian is shown in Eq. (A5):

- #N,; &N. # N
-7 o e o
& az az az
. #N; &N, #Nay
n o oz oEan
- - | agal  aga: aga |
I [~ #N, #N; #Nag |
E1T | W e
aJ _ - EN, &N, #Nop
dt U E Tap
¢ PN, PN, PNoy
-7 | ondl  dndl andl |
e I FNy |
& acat  acat azaz
. #N; &N, # Ny
N aTa 9Ly acan
¢ #N, #Ns #Nag
- - | 7 FEE
X1 M &1
X Y2 22
x| ‘ L (A5)
L‘Tzu Y20 220 J
5. Gradients

Parameter gradients in the local coordinate frame
within the FE volume are derived in a similar fash-
ion to the Jacobian matrix. Namely,

@ N, Ny AN |' P "

3 aZ daZ dZ P2

| _ | 9Ny dNs N 20 (AB)
day | dn dn dan . :

P Ny N N30 :

% & & 9 P2o

This can be applied to any parameter with values
defined at each node (temperature, refractive
index, etc.).

6. Element Generalization

The approaches outlined here are applicable to any fi-
nite-element type, within the limits of the specifictype
chosen. For example, first-order elements have linear
shape functions, and the second derivatives collapse
to zero. While the construct still applies, the compo-
nent of Eq. (10) that requires the derivative of the Ja-
cobian will vanish, which will undoubtedly introduce
error into the ray-trace calculation. Even so, any sec-
ond- (or higher-) order element (e.g., tetrahedrons) can
be accommodated. The shape functions of common
element types are available in the open literature.

Appendix B: Physical Coordinates to Local Master
Element Coordinates Transformation

With respect to interpolating position, the FE con-
struct provides a direct method to convert from the
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local coordinate frame to the physical coordinate
frame. This conversion is based on the shape funec-
tions, as shown in Appendix A, and is typically non-
linear in nature. Inverting the transformation to find
local coordinates from a given set of physical coordi-
nates can be ill posed and introduce an unacceptable
error into the derived local coordinates.

Since the ray-trace algorithm requires a reliable
conversion from the given physical ray intersection
point to the local coordinate frame of the incident
element, a more rigorous algorithm must be applied.
Several methods can be found in open-source litera-
ture. The ultimate goal of any conversion algorithm
is to yield local element coordinates that, when
applied to the shape-function interpolation, sub-
sequently yield the original physical coordinates.

The method used for this study is a gradient-
descent approach. A cost function is derived from
the squared error of the interpolated value from
the original coordinates, i.e.,

NyEnd)
x 1 X *20 || Ng(&n. Q)
er =1y |—- 1Y Yz Y20 :
2 21 23 220 :
Ny(€.n.0)
(B1)
cost = |err|? = err? x err. (B2)

The gradient of the cost may be calculated directly,

to yield

Veost = 2(Verr) * err = =27 * err. (B3)
These formulas can be incorporated into any
gradient-descent minimization algorithm. The
method used for this study was a conjugate-gradient
minimization, which can be found in [14].

To reduce the computational burden, note that the
point at which the ray intersects the element is a face
of the element. As such, the corresponding inter-
section plane in local coordinates has a value of
either +1, or —1. Therefore, this coordinate is already
known in the local coordinate frame. The other two
coordinates may be found by reducing the problem to
that of intersection with a shell (or plate) element
that defines the surface of incidence. For a HEX20
element, the surface can be described by an eight-
node quadrilateral, or QUADS shell element. The
same approach outlined in Egs. (B1)-(B3) may then
be employed using only eight nodes and shape func-
tions, with dependency on only the two remaining
local coordinate axes.

Appendix C: Inter-Element Transformation Matrix

A simple inter-element transformation can be de-
rived by exploiting the node-numbering scheme of
the neighboring elements, assuming the elements
are members of a common family (e.g., HEX or
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Table 3. Node Local Coordinates for Element 1
Node
Axis 2 3 7 6
£ +1 +1 +1 +1
1 -1 +1 +1 =1
e -1 -1 +1 +1
Table 4. Node Local Coordinates for Element 2
Node
Axis 2 3 4 1
£ +1 +1 -1 =1
n -1 +1 +1 -1
& -1 -1 -1 =1

TET elements). The technique involves collecting the
local coordinates of the nodes contained in the
common face in each element, respectively. To illus-
trate, we use the previous example of a ray exiting
from element 1 and entering element 2, as shown
in Fig. 2. Using the first four nodes [2, 3, 7, 6]
from the common face in element 1, which correlate
to nodes [2, 3, 4, 1] of element 2, we collect the node
positions in each loecal coordinate frame, as listed in
Table 1 of Appendix A. This is illustrated in Tables 3
and 4.

A basis is then formed from vectors derived from
thesenodelocal coordinates, in each element. The first
vector is the definition of the common plane, found by
taking the mean of each row of the tables above:

& 1
Uy, = mean| # =101

$)en 0

& 0
Uy, = mean| # =10

£/ er -1

The remaining two vectors of the basis are com-
puted from orthogonal edges of the common face:

-0
_ Node3g;, — Node2g;;, 1
Uip = 2 -
. 0 =
-0
_ Node3g;s — Node2g» _ |1
Uap = 2 -
| 0]
0
_ Nodebg; — Node2g;; 0
Uy = 2 -
L 1]
-_1W
_ Nodelgp — Node2g;2 0
Uy, = 2 - :
o]
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These vectors are then assembled into the respec-
tive bases to form

1 00 0 0 -1

B;=10 1 0 Ba=| 0 1 0

0 0 1 1 0 0

Since the ray is exiting element 1 and entering
element 2, the transformation matrix is derived in
the following manner:

0 0 -1
T=BBy,=|{ 0 1 0
-1 0 0

In the common plane shared by the two elements, the
coordinates of the ray intersection are converted
from the local coordinates of the first element to
the local coordinates of the second element by this
transformation:

o 1
nz | =T m
o €1

Sandia National Laboratories is a multi-program
laboratory managed and operated by Sandia Corpo-
ration, a wholly owned subsidiary of Lockheed Mar-
tin Corporation, for the U.S. Department of Energy’s
National Nuclear Security Administration under
contract DE-AC04-94A1.85000. (SAND2014-2030.J).
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APPENDIX B: ANSYS ANALYSIS AND MODEL

PREPARATION FOR OUTPUT TO ZEMAX
Eric Couphos (2617)

Introduction

ANSYS is a finite element analysis (FEM) package used to model and analyze thermal and
structural loads on systems. This appendix will outline the process used to prepare the ANSYS
model and export analysis results into a generic form that can be imported into Zemax for further
optical analysis. This allows the user to use Zemax to analyze the optical effects of thermal and
structural loads on an optical system.

The output file includes thermal and structural results for all relevant nodes, as well as a list of
nodes associated with each optical surface and a list of element connectivity.

ANSYS Model Setup

This process is designed to output the results from a sequential thermal and structural analysis
within ANSYS. An example project schematic is shown in Figure 1.

- A - B <~ <
2 [ Geometry v 2 | @ Engineering Data v 4——M®2 & EngneeringData "
Geometry 3 ) Geometry v g3 i} Geometry v .
4@ Model v g——8 4% @ Model v 4
5 @ setup /‘/—cs i setup v 4
6 Solution v 4 6 Solution v 4
7 9 Results v o4 7 @ Results v 4
Steady-State Thermal Window Heater Static Structural
- D
| BT

2 & EngneeringData Pl

Engineering Data

Figure 1: Ansys Project Schematic

Output Coordinate System

The output coordinate system must be manually set for the optics in the analysis. The coordinate
system should typically be set at the center vertex of surface 1 of the optic, although this may
vary depending on the optical assembly. Figure 2 shows how to insert a new coordinate system.
The coordinate system type must be changed from ‘Program Controlled’ to ‘Manual’ and the
coordinate system ID must be set to /2 as shown in Figure 3.
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Project
- @] Model (D4)
v‘% Geometry

vf@ Connections &l Rename (F2) {
b Mesh
(=] Steady-State Thermal (D5)
E-------‘/TE:@ Initial Temperature
g /7'\ Analysis Settings
/88| Solution (D6)
.,/m Solution Information

Figure 2: Insert Coordinate System

|| Definition -
Type Cartesian
Coordinate System Manual ﬂ E‘
Coordinate System ID 12, R
Suppressed Mo

1| Origin
Define By Geometry Selection
Geometry Click to Change
Origin X 0. mm -

Figure 3: Set Coordinate System ID
Model Mesh

Currently the ray trace algorithm can only support 20 node hexahedral (HEX20) elements. The
model mesh in Ansys must be configured to mesh the optical elements with only HEX20
elements. This setup will be unique for different optical element geometries and may require
slicing or otherwise modifying the geometries in Ansys Design Modeler. Future support for other
elements types may be implemented in the future.

Named Selections
Named selections are used to control which nodes are used for data output. The nodal
information is only needed for nodes associated with optical elements. The code will output

information for all nodes in a named selection called optics. This named selection must be
created by the user and titled optics. Figure 4 shows how to create a named selection.
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Go To
/] Clear Generated Data On Selected Bodies
Parts 4

& Hide Body (F9)
& Hide All Other Bodies

Suppress Body

Suppress All Other Bodies
Unsuppress All Bodies

{@ Invert Suppressed Body Set
) Isometric View

G50 et

ij Restore Default

Zoom To Fit (F7)

Cursor Mode 4
View »
79 Look At
Create Coordinate System

Q Create Named Selection
53 Select All (Ctrl+ A)

Update Geometry from Source
Reset Body Colers

Figure 4: Create Named Selection

Named selections must also be created for the front and rear surfaces of optics and labelled
surface I and surface 2 respectively. If there are multiple optical elements, elements should be
labelled lens 1, lens 2, etc. Additional optical surfaces should be labelled surface 3, surface 4,
etc.

Output Solution Results
The code used to output the ANSY'S analysis results is inserted as an APDL command within the
solution dropdown in the project tree. Two different sets of code are used; one in the steady-state

thermal solution and one in the static structural solution. Figure 5 shows how to add a command
object, and Figure 6 shows how to import the code from a text file.
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Project

= @] Model (D4, E4)

[ A Geometry

g ,!‘ Coordinate Systems

----- Connections

....... ./% Mesh

7 O Named Selections

—}--9[=] Steady-State Thermal (D5)
720 Iritial Temperature
Analysis Settings

Probe L4

-1l
)

:}’ Evaluate All Results

A= Importe
= ' Solutic

Coordinate Systemns L

7] Clear Generated Data
gk Rename (F2)

B User Defined Result

A Open Solver Files Directory

Figure 5: Insert Solution Command

... {=] Steady-State Thermal (D5)
'nge Initial Temperature

2\ Analysis Settings

'l Temperature

ﬁ[ Temperature 2

Solution (D6)

~{¥] solution Information

Figure 6: Import Code

The output file location and file name are set in the code used to export thermal results. The
output file location must be set to a local drive and not a network drive. An excerpt of this code
is shown in Figure 7.

The analysis step number to be exported is also set within this code, as shown in Figure 7.

L Preparsed by: Eric

ETTIRTIIS | YT ERAM ETT ETTAMT
{CLUDING .TXT FROM FILENAME)

G o B ot b oW R

9 Gl o STDINC
10 Qoutputloc (l)='C: \Users\ejcouph\Desktop|sample output JI

14 timestep=]
15 set,timestep

Figure 7: Thermal Results Output Code Snippet
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Summary

The process outlined above will allow the user to export FEM analysis results to a text file in a
generic format that can be subsequently imported into Zemax for further analysis. The completed
project tree must include the elements noted in Figure 8. These elements include a new
coordinate system, named selections, and commands.

Project
(=R Model (D4, E4)

I ----- ﬁ Geometry
-2 Coordinate Systems

L oAl Coordinat
Ezl ..... -1'-
....... ‘(% Mesh
e 1 [Man
. ‘,@] surface_1
A (@] surface_
B ol e hermal (D5)
------- WiE: = Initial Temperature
....... i ﬂ Analysis Settings
------- ﬁ il Temperature
....... ﬁ | Temperature 2
= ‘ solution (D&)
b Solution Information
H .....

o N .ﬁ.nalysm Sethngs
o ‘ Imported Load (D6)
e (- Solution {EE}

Figure 8: Final Project Tree

Ansys Code & Sample Output File Locations

The Ansys code required is currently located in the following folder:
\\citade N\ TOPCode\Analyses\ANSY S-Couphos\Ansys Commands

Output files are located in the following folder:
\\citade\TOPCode\Analyses\ANSY S-Couphos\Analysis Output TXT Files

PeDalL is a program offered by PADT that is inexpensive and excellent for editing ANSYS code.
The code used to export thermal results is titled /40829Ansys_thermal _node export.txt and the
code used to export structural results and element connectivity is titled

140829Ansys_structural _node_export.txt.
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APPENDIX C: ZEMAX COMPATIBLE SIERRA

MECHANICS FEM MODEL
Sam Subia (1541)

The stated objective of this LDRD is to improve the design of optical lenses. These designs are
usually developed using optical design software packages. Here the objective is to include the
effects of temperature and deformation obtained from FEM numerical simulations during the
design process. One aspect of the project is to enable this information to be imported into the
Zemax lens design software. Initial efforts to this end have focused on importing temperature
and displacement results from ANSY'S Mechanical into Zemax. Since our goal is to apply the
methodology with arbitrary FEM results we now seek to extend the import process employed
with ANSY'S results to include a Sierra Mechanics code.

In demonstrating the import process with results from a different application code it is important
that we perform this demonstration using the same model. Hence we begin the exercise by
attempting to generate the same FEM mesh. Owing to differences in how FEM models are
constructed one discovers that obtaining the same FEM mesh is often difficult. The outline
below describes the process of generating an equivalent of the ANSYS meshed discretization.

An initial lens model was constructed using Hex20 elements in the ANSYS Mechanical
software. ANSYS Mechanical provides an export capability of the mechanical mesh to that of
another ANSY'S product. Since ANSYS Mechanical is the only ANSY'S product that supports
the Hex20 this limitation immediately restricts the achievable geometric resolution of the export
mesh. Nonetheless, our effort continued in order to define a methodology that could use to
service other application codes as well.

The steps used to obtain an Exodusll model geometry is outlined as follows.

Export mesh from ANSYS:
1. Enable the export of a Fluent mesh in ASCII format from the Model — Export dialog
2. Export the mesh — selecting File — Export
3. Save the project — failure to do will delete the exported mesh — name.msh .

Obtain an ExoduslIl Mesh:
1. Open the Fluent mesh in Paraview — selecting the “all files” option, then select the Fluent
Case Files option
2. Export the ExodusIl mesh — select the File — Save Data option write the file as
“ExodusII”

Generate a Mesh — the output from Paraview is a HEX8 mesh and we need a HEX20 mesh
1. Import the mesh into Cubit using default options
2. Add side sets as needed
3. Reset the element type — BLOCK # ELEMENT TYPE HEX20
EXPORT GENESIS “new_exodus_file.g”
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The original and modified mesh is shown in Figure C.1. At this point we are ready to proceed in
developing an equivalent ANSYS model using Sierra Mechanics.

Figure C.1 Original and modified mesh.
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APPENDIX D: GRAVITY & MOUNT INDUCED DEFORMATION

OF OPTIC DURING THERMAL TESTING
Eric Couphos (2617)

Introduction

Part of the TOP LDRD consists of thermal testing of a BK7 window and a fused silica window.
The 3” diameter, 0.5” thick, windows are heated to create a thermal gradient and measurements
of the surface temperature and distortion are obtained with an interferometer, IR camera and
thermocouples. The windows are held during testing in a 3 point spring loaded self-centering
lens mount shown in Figure 1. FEA analysis was performed to estimate the effects of the spring
loaded mount and gravity on the window during testing and determine if these effects should be
accounted for during subsequent analysis. Both effects were determined to have a negligible
effect on surface deformations and can be ignored in more detailed analysis of the thermal
gradient induced deformations of the windows.
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Model Setup

The ANSYS model shown in Figure 2 consists of 3 delrin supports and a fused silica window.
BK7 was not modeled as it is stiffer than fused silica and should have smaller deformations. This
is a simplified model of the mount used for actual testing. The inner diameters of the delrin
supports are fixed and the window is simply supported by these 3 delrin supports. An inward
radial force was also included at each of the 3 delrin supports to represent the spring-loaded
centering force of the mount. Gravity is acting in the negative Y direction.

Gravity

Fixed Support (3x) 3x Delrin Mount
Posts

Radial Spring Force
(3x)

Fused Silica

Window
L.
X

0.00 25.00 50.00 (mm)
I I
12.50 37.50

Figure 2: ANSYS Model Setup

Analysis Results

Figure 3 shows the total deformation of the window due to gravity and mount stresses. This
motion consists primarily of a 9 nanometer (nm) rigid body decenter of the window. This
decenter value can be ignored during subsequent analysis as it is a constant value that should not

change during testing and is very small compared with the expected deformations of the window
during testing.

Total Deformation - WINDOW_CV1_FS_PWW1-3050-U188]
Type: Total Deformation
Lnit: pm

Time: 1

Bidr2014 4:41 P

0.009956 Max
0.009558
0.0091601
0.0087621
0.0083641
0.0079662
0.0075682
0.0071703
00067723
0.0063744 Min

W

..

Figure 3: Total Window Deformation
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Figure 4 shows the deformation of the front surface in the axial direction. It shows a peak surface
deformation of 1 nm which is artificially high due to the simplified contact with the delrin
support.

Z Axis - Directional Deformation - WINDOW_CW1_FS_PWA1-3050-U]188]
Type: Directional Defarmationi{Z Axis)
Unit: pm

Global Coordinate System
Time: 1

Br452014 4:44 PM

0.0010613 Max
0.00082377
n.oooveez
0.00064862
0.00051105
0.00037347
0.0002359
9.8323e-5
-3.9262e-5
-0.00017683 Min

L.
Figure 4: Front Surface Axial Displacement

Summary

The effects of the mount and gravity can be ignored as negligible during further detailed analysis
of this test setup. A rigid body decenter motion of 9 nanometers and a front surface deformation
of 1 nanometer are anticipated based on the results of this analysis. These deformations are very
small compared to the expected surface deformation during thermal testing and were not
apparent during initial interferometry measurements of the mounted window.
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USER:

APPENDIX E:

ejcouph

FILENAME:140606 hot cold optic_and window heater--Steady-St
ANALYSIS DATE (YEAR,MONTH,DAY) :20140606

* Kk k kX UNITS * Kk Kk Kk Xk

MPA UNITS SPECIFIED FOR INTERNAL

LENGTH
MASS
TIME

TEMPERATURE =

TOFFSET
FORCE
HEAT

= MILLIMETERS (mm)
= TONNE (Mg)

SECONDS (sec)
CELSIUS (C)
273.0

= NEWTON (N)
= MILLIJOULES (mJ)

##NODE INITIAL POSITION DATA##

node num
1149
1150
1151
1152
1153
1154
1155
1156
1157
U

Xx-int
-12.57674302999999938
-12.57674302999999938
-12.57674302999999938
-11.91578550000000014
-11.91578550000000014
-11.91578550000000014
-25.38368980999999991
-25.38368980999999991
-25.38368980999999991

[l

##NODE TEMPERATURE DATA##

node num
1149
1150
1151
1152
1153
1154
1155
1156
1157
U

temp
27.57372860517499191
27.61192820336622944
27.57372860517498836
27.77501079047443255
27.81470356205176131
27.77501079047443255
37.38867795658788395
37.50157084519752715
37.38867795658789106

O

* Kk ok kK UNITS * Kk ok kK

MPA UNITS SPECIFIED FOR INTERNAL

LENGTH
MASS
TIME

TEMPERATURE =

TOFFSET
FORCE
HEAT

= MILLIMETERS (mm)
= TONNE (Mg)

SECONDS (sec)
CELSIUS (C)
273.0

= NEWTON (N)
= MILLIJOULES (mJ)

##NODE DISPLACEMENT DATA##

node num
1149
1150
1151
1152
1153
1154
1155
1156
1157
0

x—-disp
-0.00032528553669064
-0.00032591249659619
-0.00032528553664935
-0.00033499980654290
-0.00033550922775187
-0.00033499980650148
-0.00365868893890354
-0.00364982301188921
-0.00365868893885994

0

##NODE STRESS/STRAIN DATA##

node num
1149
1150
1151
1152
1153
1154
1155
1156
1157
U

stress
.27625804495906037
.29031133930186570
.27625804495906037
.25378378415310410
.26866699011751249
.25378378415310365
.21736672234805643
.14203439343607038
.21736672234805643

O

EFR R R R R

TIME (HOUR,MIN, SEC) : 91543

y—int
-26.61591358000000085
-26.61591358000000085
-26.61591358000000085
-24.879000009999998¢61
-24.87900000999999861
-24.87900000999999861
11.39841625000000036
11.39841625000000036
11.39841625000000036
0

y—-disp
.00103324340611798
.00103622152979977
.00103324340610450
.00113456576591513
.00113805574523065
.00113456576590165
.00273095530797711
.00275027109421990
.00273095530796137

0

OO OO OO O oo

strain
.00001556414008519
.00001573552117407
.00001556414008519
.00001529013570689
.00001547163871389
.00001529013570689
.00001484606821123
.00001392737954120
.00001484606821123

O

OO OO OO OooOo
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[eoNe)

(@]

SAMPLE FEM FILE FORMAT

z-int

.17499992325902092
.34999992325902429
.52499992325902056
.17499992325902092
.34999992325902518
.52499992325902056
.17499992325902092
.34999992325903584
.52499992325902056

U

z-disp

.00012966135511114
.00000005778089883
.00012977691690881
.00013300463095579
.00000005778089821
.00013312019275222
.00035156792954221
.00000005778107272
.00035168349168761

0



#4#NAMED SELECTION NODE DATA##
SURFACE_1
3402
3403
3404
3405
3406
3407
3408
3409
3410
0

SURFACE_2
4153
4154
4155
4156
4157
4158
4159
4160
4161

0
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LIST ELEMENT TYPES FROM

1

1 TO

*xxxx ANSYS - ENGINEERING ANALYSIS SYSTEM RELEASE 15.0 KERX KK

ANSYS Mechanical

00601480

VERSION=WINDOWS x64

09:16:54 JUN 06, 2014 CP=

140606 _hot cold optic and window heater--Static Structural (E5)

ELEMENT TYPE
KEYOPT ( 1- 6)
KEYOPT ( 7-12)
KEYOPT (13-18)

ELEMENT TYPE
KEYOPT ( 1- 6)
KEYOPT ( 7-12)
KEYOPT (13-18)

ELEMENT TYPE
KEYOPT ( 1- 6)
KEYOPT ( 7-12)
KEYOPT (13-18)

ELEMENT TYPE
KEYOPT ( 1- 6)
KEYOPT ( 7-12)
KEYOPT (13-18)

ELEMENT TYPE
KEYOPT ( 1- 6)
KEYOPT ( 7-12)
KEYOPT (13-18)

ELEMENT TYPE
KEYOPT ( 1- 6)
KEYOPT ( 7-12)
KEYOPT (13-18)

Is

IS

Is

Is

Is

Is

SOLID186
0 0
0 0
0 0
SOLID186
0 0
0 0
0 0
CONTA174
0 0
0 2
0 0
TARGE170
0 0
0 0
0 0
SURF154

0 0
0 0
0 0
COMBIN14
0 0
0 0
0 0

CURRENT NODAL DOF SET IS UX
THREE-DIMENSIONAL MODEL

##ELEMENT CONNECTIVITY DATA##

elem # elem typ # node

141
142
143
144
145
146
147
148
149
g

e e e

20
20
20
20
20
20
20
20
20
o

Uy

3-D 20-NODE STRUCTURAL SOLID

0 0 0 0
0 0 0 0
0 0 0 0

3-D 20-NODE STRUCTURAL SOLID

0 0 0 0
0 0 0 0
0 0 0 0

3D 8-NODE SURF-SURF CONTACT

0 0 0 0
1 2 0 5
0 0 0 0

3-D TARGET SEGMENT

0 0 0 0
0 0 0 0
0 0 0 0

3-D STRUCTURAL SURFACE

0 0 0 0
0 0 0 0
0 0 0 0

SPRING-DAMPER

0 0 0 0
0 0 0 0
0 0 0 0
Uz

node numbers

1149 1152 2289 2337
1149 2337 2289 1152
1150 2338 2290 1153
1151 2339 2291 1154
1149 2337 2700 2703
1149 2703 2700 2337
1150 2704 2701 2338
1151 2705 2702 2339
1149 2703 2706 1167

| g g g

28.408

4152
1150
1151
4153
4152
1150
1151
4153
4152

4151
2338
2339
4549
3756
2704
2705
4671
3634

3772
2290
2291
4533
3635
2701
2702
4670
3633

3756
1153
1154
4154
3634
2338
2339
4549
4146

5285
5287
5293
5297
5287
5288
5294
5298
5288

79

5301
9322
9325
9326
9471
10713
10717
10719
10723

9322
5301
5305
5307
10713
9471
9475
9477
5365

5287
5285
5291
5295
5288
5287
5293
5297
5286

14439
5293
5297

14442

13726
5294
5298

14443

13494

13761
9325
9326

15279

13496

10717

10719

15560

13491

13725
5305
5307

14444

13493
9475
9477

15308

13492

13726
5291
5295

14440

13494
5293
5297

14442

14436

5289
5284
5290
5299
5289
5284
5290
5299
5289

5303
9469
9473
9478
9472
10722
10726
10731
10725

9323
9321
9324
9327
10715
10712
10716
10721
10735

9472
5300
5304
5309
10725
9469
9473
9478
5366



ek ke

MS0406
MS0406
MSO0836
MS0899
MSO0359
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